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XIII. NUMERICALS AND THE DEFINITE ARTICLE 

 

Expressing numericals in predicate logic. 

We are interested here in expressive capacity:   

 

property P can be expressed in predicate logic iff there is a predicate logical formula φ 

such that for every predicate logical model M:  P holds in M iff ⟦φ⟧M = 1. 

 

So we are not concerned here with interpreting compositionally a natural language 

expression like, say, more than seven but less than twelve cats are smart, but only 

with the question whether the truth conditions of that sentence can be expressed at all 

with some formula of predicate logic.  We will see that the answer is yes for this 

example, but no for other examples, like most cats are smart. 

 

(1) At least one cat is smart. 

 

 

 

 

 

(2) At least two cats are smart. 

 

 

 

 

 

(3) At least three cats are smart. 

 

 

 

 

 

 

(4) At most one cat is smart. 

 

 

 

 

 

 

(5) At most two cats are smart. 
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(6) At most three cats are smart. 

 

 

 

 

 

(7) Exactly n cats are smart = ? 
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Expressing numericals in predicate logic 

(1) At least one cat is smart. 

 x[CAT(x)  SMART(x)] 

(2) At least two cats are smart. 

xy[CAT(x)  SMART(x)  CAT(y)  SMART(y)  (x=y)] 

(3) At least three cats are smart. 

xyz[CAT(x)  SMART(x)  CAT(y)  SMART(y)  CAT(z)  SMART(z) 

(x=y)  (x=z)  (y=z)] 

(4) At most one cat is smart. 

xy[CAT(x)  SMART(x)  CAT(y)  SMART(y) → (x=y)] 

(5) At most two cats are smart. 

xyz[CAT(x)  SMART(x)  CAT(y)  SMART(y)  CAT(z)  SMART(z) →  

 [(x=y)  (x=z)  (y=z)]] 

(6) At most three cats are smart. 

xyzu[CAT(x)  SMART(x)  CAT(y)  SMART(y)  CAT(z)  SMART(z) 

  CAT(u)  SMART(u) → [(x=y)  (x=z)  (x=u)  (y=z)  (y=u)  (z=u)]] 

(7) Exactly n cats are smart = at least n cats are smart  at most n cats are smart. 
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Russell: 

 

(7) The cat is smart. 

 

x[CAT(x)  y[CAT(y) → (x=y)]  SMART(x)] 

There is one and only one cat and that cat is smart. 

 

Problem:   

 

(8)  The cat isn’t smart 

 

Russell:  

 

¬x[CAT(x)  y[CAT(y) → (x=y)]  SMART(x)] 

∀x[CAT(x) ∧ y[CAT(y) → (x=y)] → ¬SMART(x)] 

If there is one and only one cat, that cat isn’t smart 

 

But (8) also implies that there is a cat, and the negation of Russell’s formula doesn’t. 

 

Frege,Strawson:  The existence and uniqueness are not asserted but presupposed. 

 

Add to L3: 

 If P  PRED1, then σ(P)  TERM 

Semantics: 

   d  if ⟦P⟧M,g = {d}  

 ⟦σ(P)⟧M,g = 

   ⊥  otherwise 

 

⊥ stands for undefined 

If there is an individual d ∈ DM such that d is the one and only object in DM that has P 
(rel g), i.e. ⟦P⟧M,g ={d}, then σ(P) denotes d in M (rel g),  ⟦σ(P)⟧M,g = d. 

If for no d ∈ DM ⟦P⟧M,g ={d}, the σ(P) is undefined in M rel. g. 

 

This is the case when ⟦P⟧M,g = Ø (existence failure),  
                               or if |⟦P⟧M,g| > 1 (uniqueness failure) 
 

This requires a three valued semantics which allows the truth value of expression to 

be undefined.  Example: 

 

(8) The cat is smart. 

SMART(σ(CAT)) 

 

        1  if  ⟦σ(CAT)⟧M,g  FM(SMART) 

⟦SMART(σ(CAT)⟧M,g =      0  if  ⟦σ(CAT)⟧M,g  DM − FM(SMART) 

        ⊥ otherwise 

 

(8) is undefined if  there is no cat, and also if there is more than one cat. 
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The use of an expression to talk about a situation M presupposes that it is defined in 

M.  Hence the use of (8) to talk about M, presupposes that FM(CAT) is a set with 

exactly one element, a singleton set. 

 

Existence failure:  #Though I don’t have a cat, the cat I have is white. 

Uniqueness failure:  # 

 

 
 

Other example:  You walk through an alley. There are two cats sitting on a garbage can. 

                    You say:  The cat is white.    #  infelicitous. 

 

Similar modifications are needed for sentences involving n-place relations and 

identity statements. 

 

Also the connectives need to be modified.   

 

Three valued negation: 

 

     0 → 1 

  1 → 0 

     ⊥ → ⊥ 

 

Now it follows that both WHITE((CAT)) and WHITE((CAT)) presuppose that 

there is a unique cat (in the context). 
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presuppositions of speech acts (Stalnaker):  assertion, denial, questioning,  supposition. 

 

Assertion: Your cat is white. 

Denial:  Your cat isn’t white 

Questioning: Is your cat white? 

Supposition:  If your cat is white, the this is not your cat. 

 

But cf:  If he has a cat, his cat is young 

 (presupposition satisfied inside the sentence) 

 

Further modifications of the semantics:  strong Kleene three values semantics for 

connectives and quantifiers. 

Strong Kleene three valued truth tables: 

 

 φ 1 0 ⊥  φ 1 0 ⊥ 

ψ     ψ     

  

1 1 0 ⊥  1 1 1 1 

 

0 0 0 0  0 1 0 ⊥ 

 

⊥ ⊥ 0 ⊥  ⊥ 1 ⊥ ⊥ 
 
 

Generalization to quantifiers: 

 
  1 iff  for every d  DM: ⟦φ⟧M,gx

d = 1 

⟦xφ⟧M,g =   0 iff for some d  DM: ⟦φ⟧M,gx
d = 0 

  ⊥ otherwise 

 

  1 iff  for some d  DM: ⟦φ⟧M,gx
d = 1 

⟦xφ⟧M,g =   0 iff for every d  DM: ⟦φ⟧M,gx
d = 0 

  ⊥ otherwise 

These clauses generalize the clauses for  and .  
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Metalinguistics negation 

 

What about the following counterexample: 

 

(1) A letter to the Times: 

Sir.  In contradiction to what was written in the Times yesterday, the president 

of Belgium was not sent to prison, because, as you ought to know, Belgium is  

a monarchy.  

 

No contradiction. 

 

Metalinguistic negation.  (Horn 1985) 

 

     In Dutch –n after schwa is not pronounced, except in Groningen, despite what the  

      crazy new spelling reform rules try to make you believe. 

     You are ordering pancakes in an Amsterdam pancake restaurant, and you read your  

     order aloud from the menu (in new spelling) to the waiter.  The waiter says to  

     you with a sneer: 

 

(2) Sir, we do not have “pannenkoek” on the menu, we only have “pannekoek” on the  

      menu (we are in Amsterdam here). 

 

This doesn’t mean: it is not true that we have pancakes on the menu, the waiter 

accepts that there are pancakes on the menu, but objects to some other aspect of the 

utterence, like: 

 

-a presupposition (1) 

-the pronunciation (2) 

-the register (3) 

 

(3) Larry Horn’s example: 

     No Johnny, Phideau didn’t shit on the rug.  he defecated on the carpet.  

 

These cases are instances of metalinguistic negation (Horn): 

 

Metalinguistic negation:  Use negation to object to some aspect of the utterance other  

                                         than truth value. 

 

Like pronounciation, register, or indeed:  presupposition. 

 

 

Presupposition 

Assertion, denial, questioning, supposition of φ presuposes p. 

 

The above cases are counterexamples. 

But this is not the standard use of negation. 
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Stalnaker: we only expect presuppositions for an utterence, if that utterence is 

intended as an assertion. 

 

Example with conditionals: 

Conditional assertion:   

If the president opened partiament yesterday, then today is Wednesday. 

Presupposition:  there is a president. 

 

Meta reasoning about what the antecendent presupposes (not conditional assertion)” 

 If, as you say, the president opened partiament yesterday, then that means that 

            there is a president.    

No presupposition that there is a president for the whole sentence. 
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WHY MOST IS NOT FIRST ORDER DEFINABLE 

 

 

  CAT ∩ SMART  CAT ― SMART 

 

 

 

Let  = Every Cat is Smart 

 

For this example we ignore the irrelevant set DM ― CAT. 
We start with CAT = Ø, so CAT ∩ SMART = Ø and  CAT ― SMART = Ø 

 

D = Ø   

CAT ∩ SMART  CAT ― SMART 

 

      φ = every cat is smart 

   

 

 

φ is true 

 

Now we add an object d1:  CAT = {d1}.   

 

I can put d1 in CAT ∩ SMART  or in CAT ― SMART  
CAT ∩ SMART   CAT ― SMART                    CAT ∩ SMART  CAT ― SMART 

 

          d1        d1 

   

 

 

situation 1a: φ is true     situation 1b: φ is false 

 

Now we add a second object d2: CAT = {d1, d2} 

 

The options that we have are: 

Starting in situation 1a or in 1b we can put d2 in the intersection or the difference 

 

CAT ∩ SMART   CAT ― SMART                    CAT ∩ SMART  CAT ― SMART 

 

          d1, d2      d2  d1 

   

 

 

situation (1a)a   φ = true   Situation (1b)a  φ is false  

 

 

 

 

 

 



 10 

CAT ∩ SMART   CAT ― SMART                    CAT ∩ SMART  CAT ― SMART 

 

          d1  d2      d1, d2 

   

 

 

situation (1a)b  φ is false  situation (1b)b  φ is false 

 

What we see is this:  φ starts out as true when CAT = Ø. 

As long as we put new objects in CAT ∩ SMART, φ stays true. 

We can make the truthvalue flip  by putting a new object in CAT ― SMART, φ 

becomes false.   

Once we have put an object in CAT ― SMART, new objects will not affect the truth 

conditions any more: once false, φ stays false when adding objects.   

We see:   

the truth value of φ can flip in the process of adding object to the domain at most 

once, from true to false.  

 

 If every cat is smart is true on domain D, it can become false by adding a cat, but as 

soon as it is false on a domain, no matter how many individuals I add to the domain, 

every cat is smart stays false (i.e. one non-smart cat is enough). 

 

 

The same holds for a sentence like ψ = Some cat is smart for inverse reasons:   

 

 

 

D = Ø   

CAT ∩ SMART  CAT ― SMART 

 

      ψ = some cat is smart 

   

 

 

ψ is false 

 

Now we add an object d1:  CAT = {d1}.   

 

I can put d1 in CAT ∩ SMART  or in CAT ― SMART  
CAT ∩ SMART   CAT ― SMART                    CAT ∩ SMART  CAT ― SMART 

 

          d1        d1 

   

 

 

situation 1a: ψ is true    situation 1b: ψ is false 

 

Now we add a second object d2: CAT = {d1, d2} 

 

The options that we have are: 
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Starting in situation 1a or in 1b we can put d2 in the intersection or the difference 

 

CAT ∩ SMART   CAT ― SMART                    CAT ∩ SMART  CAT ― SMART 

 

          d1, d2      d2  d1 

   

 

 

situation (1a)a   ψ = true   Situation (1b)a  ψ is true 

 

CAT ∩ SMART   CAT ― SMART                    CAT ∩ SMART  CAT ― SMART 

 

          d1  d2      d1, d1 

   

 

 

situation (1a)b  ψ is true  situation (1b)b  ψ is false 

 

What we see is this:  ψ starts out as false when CAT = Ø. 

As long as we put new objects in CAT ― SMART, φ stays false. 

We can make the truthvalue flip  by putting a new object in CAT ∩ SMART, ψ 

becomes true.   

Once we have put an object in CAT ∩ SMART, new objects will not affect the truth 

conditions any more: once true, φ stays true when adding objects.   

We see:   

the truth value of ψ can flip in the process of adding object to the domain at most 

once, from false to true.  

 

 If some cat is smart is false on domain D, it can become true by adding a cat, but as 

soon as it is true on a domain, no matter how many individuals I add to the domain, 

some cat is smart stays true (i.e. one smart cat is enough). 

 

Other sentences can flip more than once. 

 

Take Exactly three cats are smart. 

 

On a domain of less that three individuals,, the sentence is false.   

I can make it true once I have three individuals (flip one): put d1 in CAT ∩ SMART, 

then put d2 in CAT ∩ SMART, Exactly three cats are smart is still false.  

Now put d3 in CAT ∩ SMART, and Exactly three cats are smart  becomes true. 

We can postpone making it flip from false to true by adding as many objects as you 

want to CAT ― SMART, but as soon as you add one more to CAT ∩ SMART, 

Exactly three cats are smart becomes true.   

After that, I can keep it true by adding objects only to CAT ― SMART. 

But I can make it false again, by adding one more object to CAT ∩ SMART: flip two. 

But that’s is, once I have added a fourth object to CAT ∩ SMART, the sentence will 

stay false what everymore you do. 

 

A sentence like exactly 3 cats or exactly 10 cats are smart can flip four times.  
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This leads to the question: 

For an arbitrary predicate logical sentence, how many times can it flip? 

 

The answer is given in a theorem: 

 

Theorem:  Every predicate logical sentence can flip maximally a finite number of  

                   times, meaning:  for each predicate logical sentence  there is a boundary  

                   number n, which is the number of times that  can flip (this number can  

                   actually be computed for each sentence) 

Barwise and Cooper 1980 Linguistics and Philosophy  

Now look at  = Most cats are smart. 

The truth conditions say:  |CAT  SMART| > |CAT ¡ SMART| 

 

We start out with a domain on which  is true.   

-Add non-smart cats to make the numbers equal:    flips:   is false. 

-Add a smart cat:                                                       flips:  is true 

-Add a non-smart cat:       flips:   is false. 

-Add a smart cat:                                                       flips:  is true 

etc… 

 

Hence, for  = most cats are smart the truth value of  can continue to flip:   

there is no number n where n is the maximal number of flips that  makes.   

 

This means, by the theorem, that there is no predicate logical formula which is 

equivalent to  Most cats are smart, because for all predicate logical formulas there is 

such a number.   

This means that most is not first order definable. 

 

The proof of the above theorem is nasty, it involves keeping track of quantifier depth, 

quantifiers embedded into other quantifiers. 
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(1) a. Finitely many angels stand on the tip of a pin. 

      b. Infinitely many angels stand on the tip of a pin 

 

The following theorem is a straighforward consequence of the basic completeness 

theorem for predicate logic, the theorem that says that every valid inference can be 

derived in the proof theory of predicate logic. 

 

If  is a set of sentences we say that M is a model for  if all the sentences in  are 

true on M. 

We say that that a model M has cardinality n iff |DM| = n  

Thus, a finite model is a model with a finite domain. 

 

Theorem:  If a set of sentences has arbitrarily large finite models, it has an infinite  

                   model. 

 

We use this theorem to prove that, while we can express all sorts of cardinality 

statements in predicate logic, we cannot express that the domain is finite or that the 

domain is infinite. 

 

We look at the following three sentences: 

 

(a) x[Angel(x)]     

(b) x[Angel(x) → Stand-on-this-pin(x)] 

(c) Only finitely many angels stand on this pin. 

 

Our set of sentences  is  = {a,b,c} 

Hence in any model for  there are only angels (by a), and they all stand on this pin 

by (b). 

Obviously, if I take a domain with one object,  specify that it is an angel and that it is 

standing on this pin, I have a model for , because it is also true that only finitely 

many angels stand on this pin in this model, namely one. 

Now, obviously, I can do this for any finite domain:  if I interpret all the objects as 

angels standing on this pin, I have a model for . 

This means that  has arbitrarily large finite models. 

 

By the theorem, it means that if (c) is definable in predicate logic, then  has an 

infinite model Minf,whose domain is the infinite set Dinf. 

 

Since this model is a model for , everything in it is an angel standing on this pin and 

since Dinf is infinite, infinitely many angels stand on this pin.  

But that means that it is false that only finitely many angels stand on this pin, so Minf 

isn’t a model for  after all.  This can only be, if there is no predicate logical sentence 

defining (c), and that means that the notions finiteness/infinite are not definable.  

 

So the determiners finitely many and infinitely many are not definiable. 

 

All cats  but at most 12 are smart 
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XIV.  ORDER RELATIONS 

 

Let R be a two-place relation. 

 

R is reflexive:  x[R(x,x)]  resemble, be as old as  

 

 

  a                     b 

 

              c                  d 

 

 

R is irreflexive: x[R(x,x)]  precede, sit next to, be younger than 

 

 

  a                     b 

 

              c                  d 

 

 

R is non-reflexive: ∃x[¬R(x,x)]  love 

R is not irreflexive: ∃x[R(x,x)] 
 

  a                     b 

 

              c                  d 

 

 

R is transitive: xyz[R(x,y)  R(y,z) → R(x,z)]  precede, be taller than 

         be part of 

 

  a                     b 

 

              c                  d 

 

 

R is intransitive:  xyz[R(x,y)  R(y,z) → R(x,z)]          be one year older than 

 

 

  a                     b 

 

              c                  d 
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R is non-transitive:  ∃x∃y∃x[R(x,y) ∧ R(y,z) ∧ ¬ R(x,z)  love, fit in, resemble, 

         is a neighbour of 

 

  a                     b 

 

              c                  d 

 

 

 

R is symmetric: xy[R(x,y) → R(y,x)]      resemble, is a neighbour of 

        sit next to (between people) 

        stand next to (houses) 

  a                     b    is equally old as 

 

              c                  d 

 

 

R is asymmetric: xy[R(x,y) → R(y,x)]  is younger than 

 

 

  a                     b 

 

              c                  d 

 

 

R is antisymmetric: xy[R(x,y)  R(y,x) → (x=y)] is part of 

 

 

  a                     b 

 

              c                  d 

 

 

R is non-symmetric: ∃x∃y[R(x,y) ∧ ¬R(y,z)]  love 

        sit next to (unlike categories) 

        I sit next to an empty chair 

  a                     b   The house stands next to 

       the lake. 

              c                  d 
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R is connected: xy[R(x,y)  R(y,x)] 

 

 

  a                     b 

 

              c                  d 

 

 

R is s-connected: xy[R(x,y)  R(y,x)  (x=y)] 

 

 

  a                     b 

 

              c                  d 

 

 

 

R is a pre-order:   R is reflexive and transitive 

R is a partial order:   R is reflexive and transitive and antisymmetric. 

R is a strict partial order:   R is irreflexive and  transitive and asymmetric.  

 

R is a total or linear order:   R is a connected partial order. 

R is a strict total order:  R is an s-connected partial order. 

 

R is an equivalence relation:  R is reflexive and transitive and symmetric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17 

Partial order: 

 

  o 

 

 o 

 

o  o 

 

o 

(ir)reflexivity understood: 

  o 

 

 o 

 

o  o 

 

o 

Transitivity understood: 

  o 

 

 o 

 

o  o 

 

o 

Direction of the graph understood: 

  o        

 

 o      o o o 

 

o  o      o o 

 

o 

 

Typical examples: 

 

Linear time: 

 

 

 

Branching time: 
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Trees: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part-of structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

We indicate partial orders with variants of ≤,  ⊑, ⊆  and strict partial orders with 

variants of <, ⊏, ⊂. 
Let < be a (strict) linear order. 
  
< has a begin point iff ∃x∀y[¬(y < x) 
< is left continuing iff < has no begin point 
< has an end point iff ∃x∀y[¬(x < y) 
< is right continuing iff < has no end point 
 
< is dense iff  ∀x∀y[(x < y) → ∃z[(x < z) ∧ (z < y)]] 
Between every two points there is a third point 
 
< is discrete iff ∀x[∃y[x < y] → ∃y[(x < y) ∧ ¬∃z[(x <z) ∧ (z < y)]] ∧ 

                 ∀x[∃y[y < x] → ∃y[(y < z) ∧ ¬∃z[(y <z) ∧ (z < x)]] ∧ 
 
In a linear order we call {y: x < y} the set of successors of x in < and  
                                               {y: y < x} the set of predecessors of x in <. 
 
If x has successors in < then it has a direct successor, and if x has predecessors 
then it has a direct predecessor. 
 
The order of natural  numbers ℕ = {0,1,2,3,...} ordered by <. 
 
The first order theory of natural numbers (ordered by <) is: 
 < is a discrete linear order which has a begin point and is 

 right continuing. 
 

The order of natural numbers is called the Standard Model of the first order theory 

of natural numbers, and in fact, of any theory of natural numbers. 

 

We would like to find a set of axioms that define the natural numbers, i.e. that are true 

at the standard model and only at the standard model.  But: 

 

Fact: there is no first order theory that defined the order of natural numbers. 

          This means:  

           Any first order theory is going to be true on non-standard models as well. 

 

The reason:  The order of natural numbers is continuous, it allows no gaps (two sets 

approaching each other but never reaching).  Continuity cannot be defined in first 

order predicate logic. 

 

Standard model: 

0  1  2  3  4  5  6  7  8  ...................... 

 

Non-standard model: 

0  1  2  3  4  5  6  7  8  .......................‒4’ ‒3’ ‒2’ ‒1’ 0’ 1’ 2’..... 

 

 

The natural numbers with a copy of the integers after it satisfies all the same first 

order axioms as the standard model  
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Equivalence relations and partitions:  is as old as + age classes 

 

An equivalence relation on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}: 

 

 

o  o          8 o  o    9 

1  2 

 

          4  o  o      5      10 o 

 

 

 

o       6  o  o     7 

3 

 

 

 

Drawing lines around the islands: 

 

 

 

o  o          8 o  o    9 

1  2 

 

          4  o  o      5      10 o 

 

 

 

o       6  o  o     7 

3 

 

 

 

 

 

A partition on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

 

 

 

o   o              8 o  o    9 

1  2 

 

          4  o  o   5         10 o 

 

 

 

o           6  o  o  7 

3 
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XV. AMBIGUITY 

 

1 Lexical ambiguity. 

 

(1) I took my money to the bank. Reading 1: And deposited it there. 

     Reading 2: And buried it there.    

Ambiguity of the lexical meaning of bank. 

 

A. Lexical drift:  adjective knap 

Flemish: knap =  1. Intelligent Een knap meisje – an intelligent girl 

      2. Admirable Een knappe prestatie – an admirable achievement  

      3. Skilful  Een knappe chirurg – a skillful surgeon 

 

Dutch: knap =  0. Pretty  Een knap meisje – a pretty girl 

      1. Intelligent  

      2. Admirable   

      3. Skilful   

In certain idioms 4. Narrow  Een knap halfuurtje – ‘a narrow half an hour’ 

     Narrowly, half an hour   

   

German: knapp = 4 By a narrow margin, Narrow, Short, Brief,  

       i..e Knapp verfehlt  - Just failed (exam result)                  

lexicography   

      

                         

B. Systematic Lexical Ambiguity 

 

MASS AND COUNT NOUNS  

(using recent work by Susan Rothstein, by me and others) 

 

1. Count nouns and mass nouns  

 

   singular  plural   Counting 

Count Nouns:  girl   girls   one girl three girls 

    rabbit  rabbits   one rabbit three rabbits 

 

Mass Nouns:    mud  #muds   #one mud #three mud(s) 

     furniture #furnitures  #one furniture #three furniture(s) 

 

Ambiguous:    hair  My hair is getting grey  

    My hairs are getting grey 
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2. Bare nouns 

 

Bare nouns are nouns that occur in argument position without determiners. 

 

ENGLISH 

 

English has Bare Plural Count nouns: 

 

 (1) a. Dogs were running around. 

      b. Dogs play with each other when they are cheerful 

      c. There were dogs running around all afternoon. 

      d. I am afraid of dogs. 

 

English has Bare Mass nouns: 

 

 (2) a. Mud was thrown at the prime minister. 

       b. There was mud on my shoe. 

       c. You shouldn’t eat mud. 

. 

English does not have Bare Singular Count nouns: 

 

 (3) a. #Dog was running around. 

       b. #Dog likes each other. 

       c. #There was dog running around all afternoon. 

        d.#I am afraid of dog.  

 

3. Grinding (down shifting) 

 

 (4) a.  After the accident with the fan, there was rabbit all over the wall. 

                  b.  When Fred stopped trying to repair the watch, there was watch all 

                        over the table. 

                    

David Lewis:  Universal grinder. 

The meaning can shift from count to mass by grinding.  

 

-A shift from the singular count meaning of the noun rabbit   

              to a ground mass reading: rabbit stuff 

(Downshifting (Landman 2020) is a better term, since the watch in (4b) is not ground.) 

 

In English:  grinding is by and large a Last Resort Mechanism (Rothstein 2017) 

 

In (4) we find the bare singular count noun rabbit. 

English doesn’t have bare singular count nouns.   

We get a grammar conflict. 

The conflict can be resolved in some positions in English by grinding. 

Not in normal argument position, but in the position that the subject is in in there-

insertion contexts: 
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Compare (5a) with (5b): 

 

(5) a. When I opened the door of the New York appartment, there were cockroaches 

           all over the wall. 

      b. After an emergency action with a towel, there was cockroach all over the  

           wall. 

   

(5a) does not have a grinding reading, (5b) does have a grinding reading.   

 

This is explained if grinding is indeed a last resort mechanism:   

English does have bare plurals, so we get a perfectly felicitous plural interpretation in 

(5a):  no conflict, no resolution of a conflict, no grinding. 

 

 

MANDARIN CHINESE 

 

Mandarin Chinese: 

1. No number;  no lexical distinction between mass and count nouns. 

2. Number expressions cannot directly modify nouns. 

 

 #Liăng  níu  #Liăng ròu  

              two     cow  two     meat 

 

3. Classifiers are used to mediate this relation.   

 

 #sān                   rén  #sān                jiǔ 

   three               man   three            wine 

          

  sān   gè              rén  sān    píng         jiǔ 

    three Clgeneral     man     three bottles of wine” 

 

Classifiers exist and are normal in many languages: 

 

English:  collection classifiers:  a flight of birds, a school of fish 

    container classifiers: a bottle of milk 

 

Classifiers are like packagers (the opposite of grinders)   

 

English: classifiers are derived from lexical nouns:  exception head in head of cattle. 

 

Cassifier languages:  classifiers are generally underived and obligatory for counting. 

 

Mandarin does distinguish count and mass nouns grammatically at this level  

(i.e. not at the level of N, but yes at the level of NP). 

Also, Mandarin does recognize the conceptual distinction between prototypically 

mass (messy) and propotypically count (objects) at the level of lexical nouns: 

 

The general individual classifier ge goes with nouns that are prototypically count,  

but not with nouns that are prototypically mass:   
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 ✓Liăng ge   níu #Liăng ge  ròu    

  two     CL  cow   two    CL meat       

 

This means that while there is no lexical mass/count distinction, the mass/count 

distinction does exist in the language.   

So it is not the case that Chinese speakers do not have the conceptual disitinction. 

 

 

4. Mandarin Chinese allows all nouns as bare nouns.  

 

What about the grinding context? 

 

 (6) Qiang-shang dou shi        gou 

                   wall-topic     all   copula  dog 

 

      - This means:   There are dogs all over the wall  (doggy wallpaper)  

      - This does not mean:   There is dog all over the wall (grinding reading) 

      - To express the ground reading, you need to use gou-rou/dog meat 

 

Conclusion: 

With respect to grinding, Chinese works like English:   

- grinding is a last resort device which comes into play in the case of a conflict.   

- since in Chinese all nouns occur bare anyway, a plural interpretation is in principle 

available in (6). 

-No grammatical conflict, no grinding. 

 

 

BRASILIAN PORTUGUESE 

 

Brasilian Portuguese has number, and bare plural count nouns (like English), but also 

allows bare singular count nouns. 

 

(7) Eu vi    criança na sala.       ✓E    ela estava ouvindo / E     elas estavam ouvindo. 

      I    saw child     in the room.  And she was    listening/ And they were      listening 

 

(8) Elefante            anda            um atrás    do      outro. 

       Elephant[sing]  walk[sing]  one behind of the other. 

             Elephants walk one after the other. 

 

Elephant walk after each other  meaning: Elephants walk after each other 

 

In Brasilian Portuguese, what readings you get is dependent on aspect: 

 

In the perfective aspect, the facts are the same as in Chinese:  no grinding. 

In the imperfective aspect, you get an ambiguity between a plural and a grinding 

reading: 
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(9) a. Depois do acidente, teve                       cachorro na parede in teira 

         After the accident     was[perfective]    dog          in the wall whole 

 

Only reading:  There were dogs on the wall   

No grinder reading 

 

      b. Depois do acidente, tinha                     cachorro na parede in teira 

         After the accident     was[imperfective] dog       in the wall whole 

 

Ambiguous:  There was dog-stuff on the wall/ there were dogs on the wall. 

 

Three languages, three different patterns to do with how bare nouns work in the 

grammar of these languages. 

 

 

(  Yet different: 

 

YUDJA (Western Amazon Language) 

No mass nouns, only count nouns.  Countextually available portioning allows 

counting for all nouns: 

 

(1) Txabiu apeta pe 

      Three   blood dripped Three puddles/spots, etc of blood dripped    ) 

 

 

 

FOODSTUFF NOUNS 

 

English: 

 

(9) a. There is apple in the salad. 

      b. There is pig in the salad  Grinding 

 

cf:  In the restaurant with three Michelin stars I take a hair out of my soup and say: 

 

(10) Yeagh, there is Cordonbleu cook in this soup. 

 

Where has the big apple gone that was lying here? 

(11)  #There is big apple in the salad 

 

The contrast: 

 

(12) a.  There is big dog in the salad  (Labrador)   

 = grinding:  there is stuff in the salad derived from big dog 

       b.  There is big banana in the salad 

 = Salad with a whole banana in it 

 ≠ grinding: there is stuff in the salad derived from big banana 
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Why is (11) weird and doesn't it have reading (12b) in analogy to (12a)? 

 

Answer: (Landman and others) 

Foodstuff nouns like apple are ambiguous between a count and a mass interpretation  

-big does not modify prototypical mass nouns 

 

Distributive adjectives: 

 

(1) a. The noisy boys – The boys are noisy distributive: individually noisy 

      collective: noisy as a group 

      b. The big boys – the boys are big only distributive: individually big 

 

Distrivutive adjectives can modify neat mass nouns, aggregate mass nouns,  

but not mess mass nouns, prototypical mass nouns: 

 

(2) a.   The big furniture – The furniture is big. 

      b. #The big mud – The mud is big. 

 

-Specific assumption: The head noun of the bare noun (i.e. apple) determines whether 

the grinding strategy is available or not. 

 

So:   

 

(1) The fooodstuff noun apple is lexically ambiguous between a count and a mass 

     noun interpretation. 

     The complex big apple is not ambiguous in the same way: there is no food stuff:  

     big apple.  

(2) In the bare noun big apple, apple is the head, and it allows a mass interpretation,  

     hence no conflict, no grinding (because bare mass nouns are allowed in English). 

(3) However, big can not modify the mass interpretation of apple, only the count  

      interpretation. 

(4)  We get a conflict after all 

 

But, by assumption, we can no longer resolve this conflict by grinding  

(because it is the head that determines whether you will grind or not). 

 

In other words:   

The last resort nature of grinding predicts that since the head noun banana/apple has a 

felicitous mass reading in this context, there is no grinding.   

But then big must apply to the mass interpretation, which is weird. 

 

Dog does not have a mass interpretation, so dog can be ground in this context.  If you 

can grind dog, you can grind big dog, hence the felicity of (12a). 

 

Does this make sense? 

Yes, when we look cross-linguistically. 
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Mandarin Chinese 

 

(12) a. Shala li        you   pinggui foodstuff 

            Salad inside have apple 

        b. Shala li        you zhu  conceptually count 

            Salad inside have pig 

  

(12a) is ambiguous: 

-There are apples in the salad 

-There is apple-stuff in the salad 

(12b) is not ambiguous: 

(12b) means:              there is a whole pig in the salad 

(12b) does not mean: there is pig-meat in the salad 

 

Foodstuff nouns.  Rothstein 2017 calls them horeca nouns.  Horeca is the dutch 

acronym for: hotels, restaurants, cafés. 

 

(So, apple counts as a foodstuff noun in Mandarin, but pig does not, even though pigs 

are, of course, eaten a lot in China.  But there is a word for pork, pigmeat.  Even if 

there isn’t such a word, say, for dog meat, the fact that dogs are eaten doesn’t mean 

that dog is a foodstuff noun.  In fact tests like the above tell us which nouns are 

foodstuff nouns in the language.) 

 

 

Brasilian Portuguese 

 

Change dog to apple: 

Both in the imperfective and in the perfective do you get two readings: 

-There are apples in the salad 

-There is apple-stuff in the salad 

 

This suggests indeed that foodstuff nouns are systematically ambiguous between mass 

and count readings. 

 

Conclusion: 

Cross linguistic variation, but systematic ambiguities and systematic connections: 

 

For singular count nouns in English we find two readings: 

-a lexical count reading 

-a derived ground reading, derivable in contexts of conflict 

 

For foodstuff nouns in English we find two readings: 

-a lexical count reading 

-a lexical mass reading 

 

And there is reason to think that there are two distinct mass readings: 

-lexical mass vs. ground mass 
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We see that Mandarin Chinese and Brasilian Portuguese in essence bring out the same 

distinctions, with some differences: 

-Mandarin Chinese does not have grinding (well, at least not in the examples studied 

here), because there isn’t a conflict to be resolved.  

-In Brasilian Portuguese, grinding is not a last resort option, but generally available 

(in the imperfective). 

 

Thus, the ambiguities form regular patterns:  there is method in this madness. 
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2. Syntactic ambiguity. 

 

(1) Old men and women danced. Reading 1 entails: Old women danced. 

     Reading 2 doesn't entail: Old women danced. 

This is an ambiguity of the scope of old. 

Usual assumption: represented in syntactic constituent structure (at surface structure): 

 

  NP           NP 

 

AP                 NP     NP   CONN NP 

  

old     NP CONN  NP     AP     NP        and        women 

 

          men         and           women    old     men 
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RELATIVE CLAUSES 

 

        a girl 

(2) a. In this opera, the prince is in love with   the girl      who doesn’t love him 

        every girl 

 

         a girl 

      b. In this opera, the prince is in love with   the girl      , who doesn’t love him 

       #every girl 

 

(2a) is a restrictive relative, (2b) a non-restrictive relative, an appositive. 

The data shows a similarity between  non-restrictive relatives and discourse anaphora: 

 

    a girl             she  

(3) a. In this opera, if   the girl        hides in the cupboard, it is because   she     doesn’t 

    every girl           #she 

         want to meet the prince.  

 

Syntactic ambiguity of the relatives: 

   

Restricted relative: 

                DP 

 

      D                       NP   

       |    

a/the/every NP       CP 

                         |                who doesn’t love him 

                       girl 

 

Non-restricted relative: 

                              DP 

 

                DP                         PRED[CP] 

                                              who doesn’t love him 

      D                 NP 

       |                | 

a/the/every       girl 

 

The syntactic ambiguity accounts for the discourse anaphora facts:   

-in the restrictive relatives there is normal binding  

-the non-restrictive relative patterns with discourse anaphora.  It adjoines to a full DP, 

which functions as its discourse anaphora antecedent. 
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3. Scope ambiguity: quantifiers and negation (English) 

 

(3) Everybody isn't smart. 

Reading 1: x[SMART(x)]   in the scope of  

Reading 2: x[SMART(x)]  x in the scope of  

 

Usual assumption: not represented in syntactic constituent structure (at surface  structure). 

 

Alternative approaches: 

 

I. Movement. Ambiguity is represented in constituent structure at a different level: 

Logical Form. 

-Build one surface structure. 

-Allow scope taking operators to be moved, creating logical forms (For quantifiers, 

this is in essence what Frege did). This allows two logical representations.   

-Interpret these two logical representations. 

Theoretical Claim:  There is a level of Logical Form ordered after the surface syntax: 

Semantic interpretation takes place after the surface structure is fully derived.` 

 

II. Storage. Ambiguity is represented in semantic derivation: the same syntactic 

constituent structure at surface structure is derived in two different ways: 

-the semantic operations for building the meaning of one surface structure for (1) can 

be applied in two different orders, or, more commonly, combining the interpretation 

of a scopal expression can be delayed in the derivation, with the interpretation stored 

and retrieved at a later stage of the derivation.   

This allows for different derivations of the same surface structure with different 

scopal interpretations. 

Theoretical Claim: 

You don't need to wait with interpreting till you have derived surface structure, there 

is no independent level of logical form. 

 

III. Type shifting.  The effect of storage or movement can be captured by a semantic 

operation which shifts the normal, minimal interpretation of a scopal expression to an 

expression of a higher logical type which will give it wide scope.   

With the choise of not applying the shift and applying the shift, you derive one 

surface structure with two interpretations. 

Theoretical Claim: 

You don’t need movement or storage for this. 

 

Evaluating these approaches requires more semantic technique than we have here, 

they are discussed in more detail in Advanced Semantics. 

 

 

Much harder to get in other languages (Dutch, Hebrew).  Although, I heard someone 

say the following in the tram in Amsterdam one day: 

 

Elke verandering is geen verbetering 

Every change is no improvement = Not every change is an improvement 

  

So it exists, even though it sounds like a translation from English to me. 
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-Scope ambiguity: multiple quantifiers. 

 

(4) Every man admires a woman. Reading 1: His mother. (or a list…) 

      Reading 2: Madonna. 

 x[MAN(x) → y[WOMAN(y)  ADMIRE(x,y)]] 

 y[WOMAN(y)  x[MAN(x) → ADMIRE(x,y)]] 

 

(5) Some man admires every woman. 

 

Inverse reading is a bit harder to get (but try intonation: no stress on some man + 

stress on every woman). 

But the inverse reading is easy to get in other cases: 

 

(6) A flag hung in front of every window. 

                  A flag spanned every window from left to right 

 

cf. the contrast in (7): 

 

 (7) a. At the finish, a bus is waiting for every participant from Tietjerksteradeel. 

        Preferred reading: x[BUS(x)  y[P(y) → AWAIT(x,y)]] 

 

       b. At the finish, a medal is waiting for every participant from Tietjerksteradeel. 

        Preferred reading: y[P(y) → x[M(x)  AWAIT(x,y)]] 

       Inverse scope:  easy to get because medal naturally has a relational  

        interpretation ('her medal'), and the implicit argument is easily bound by  

       the other quantifier: but that requires inverse scope: 

                   y[P(y) → x[M(x,y)  WAIT(x,y)]] 

 

(8) a. In New York City a pedestrian is run over by a car every 3 minutes. 

      b. In Soviet Russia a tour guide accompanied every foreign visitor. 

 

The readings in scope ambiguities with multiple quantifiers seen so far are not 

independent:  one reading entails the other: i.e. yx[R(x,y)] entails xy[R(x,y)], 

but not vice versa. 

 

In general, if one reading α entails the other β, you have to take into account the 

possibility that the grammar generates only the weaker reading β, and derives in 

context the interpretation as a special case.   

This is what we assume for three cats are smart:  most of us let the grammar generate 

an at least interpretation and see the stronger exactly interpretation as a special case:  

we don't assume an ambiguity. 

This strategy has been attempted for scope ambiguities as well (by Tanya Reinhart in 

the seventies), but not succesfully.   

If the readings are logically independent, such a pragmatic strategy will not work.  

In that case you either have to argue that the grammar derives a third weaker reading γ 

that is entailed both by α and by β and treat both α and β as special cases (this has 

been attempted by Kempson and Cormack in the early eighties, also not succesfully, I 

think), or you have to accept that  there is indeed an ambiguity that the grammar must 

derive.    
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4. Collective-distributive ambiguity. 

 

Predicates of individuals: have blue eyes: 

Distributive interpretation: 

 

 (8) a.  John and Bill have blue eyes iff John has blue eyes and Bill has blue  

          eyes iff each of John and Bill has blue eyes. 

       b. Three boys have blue eyes iff there is a group of three boys and each of  

          those three boys has blue eyes. 

 

Predicates of groups of individuals: meet in the park: 

 

In simple cases: collective interpretation: 

 

 (9) a. John and Bill met in the park. 

           does not mean:  John met in the park and Bill met in the park. 

           does not mean: each of John and Bill met in the park. 

 

The intransitive predicate meet in the park is not a predicate of individuals. 

 

     b. Three boys met in the park. 

          means: there is a group of three boys and that group met in the park. 

          does not mean: there is a group of three boys and each of those three  

         boys met in the park. 

 

Predicates of individuals or groups of individuals: carry the piano upstairs: 

Collective/distributive ambiguity: 

 

 (10) a. John and Bill carried the piano upstairs. 

          Reading 1: John and Bill together carried the piano upstairs, 

          John and Bill carried the piano upstairs as a group. (Collective) 

 

Diagnostics of collective reading:  weak involvement of the group members:   

the boys carried the piano upstairs allows a boy that doesn't do any carrying but 

walks in front with a flag. 

 

          Reading 2: John carried the piano upstairs and (after that) Bill carried  

         the piano upstairs.  (Distributive) 

      b. Three boys carried the piano upstairs. 

          Reading 1: There is a group of three boys, and as a group, they carried  

          the piano upstairs. (Collective) 

          Reading 2: There is a group of three boys, and each of those three boys  

          carried the piano upstairs (Distributive).  

 

FACT: For sentences with multiple noun phrases we find scopal and non-scopal 

interpretations. 
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Example: 

 (11) Two flags hung in front of three windows. 

 

 

 

 

 

 

 

 

Non-scopal reading: Representation something like the following: 

 X[FLAG(X)  |X|=2  Y[WINDOW(Y)  |Y|=3  HIFO(X,Y)]] 

 

f1+f2 → w1+w2+w3 

Two flags hung in front of three windows. 

We went into town, and saw two flags sown together spanning three windows. 

 

Theories of plurality discuss whether there is one non-scopal reading or several 

(the question is: do we need to distinguish: group f1+f2 spans w1+w2+w3 from say: 

f1 spans w1+w2+w3 and f2 spans w1+w2+w3?) 

 

Models for non-scopal readings involve maximally two flags and three windows. 

 

 

 

Cumulative readings (total-total) 

20 Chickens laid 140 eggs last week. 

20 CH + 140 eggs + every one of these chickens laid some of these eggs 

                               + every one of these eggs was laid by one of these chickens 

 

These readings are not collective:  laying, give birth to are non-collective relations.) 

(argument from Landman 1994, 2000) 

 

Collective: 

(1) a.    Five women met with ten children    5 – 10  

      b.   Ten women met with five children    10 – 5 

Cumulative: 

(2) a.    Five women gave birth to ten children   5 – 10  

      b. #Ten women gave birth to five children #10 - 5 

 

Why the infelicity of (2b)?   

Because give birth to does not allow a collective interpretation. 

But then the felicitous (2a) is not collective either. 

So cumulative readings and collective readings are not the same thing. 

 

Note:  I say infelicity of (2b), but I am not saying that (2b) is strictly speaking 

infelicitous.  Rather it is uncomfortable.  Why?  Because it seems to treat giving birth 

as something that can be treated as the responsibility of the whole group of ten 

women.  The point is:  that is a collectivity effect and often uncomfortable (as group 

responsibiity often is).   
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Why do we get this effect in (2b)?  Because (2b) cannot have a cumulative reading 

(because the numbers don't allow a cumulative reading). 

Why don't we get this effect in (2a)?  Because (2a) does allow a cumulative reading. 

If there were only a collective reading, then (2a) should be as uncomfortable as (2b),  

but it is not.  The existence of cumulative readings explains the contrast. 

 

 

Scopal readings 

 

Every theory needs to distinguish non-scopal readings from scopal readings, which 

associate with distributive interpretations.  

Models for scopal readings involve a maximum of two flags and six windows, or six 

flags and three windows.  

 

The most natural scopal interpretations of (12) are: 

 

Distributive-flag takes scope over collective-window: RECTO SCOPE 

X[FLAG(X)  |X|=2      3 windows per flag  

 x  X: Y[WINDOW(Y)  |Y|=3  HIFO(x,Y)]] 

f1 → w1+w2+w3 

f2 → w4+w5+w6 

Two flags hung in front of three windows: 

We found two three-window spanning flags. 

 

 

 

 

 

Distributive-window takes scope over collective-flag: INVERSE SCOPE 

Y[WINDOW(Y)  |Y|=3       2 flags per window 

 y  Y: X[FLAG(X)  |X|=2  HIFO(X,y)]] 

 

f1+f2 → w1 

f3+f4 → w2 

f5+f6 → w3 

 

Two flags hung in front of three windows. 

Of windows with two flags, we found three. 

 

 We’ve seen many windows with one flag.  What about two flags? 

 Well, two flags…hm…two flags….let me count…. 

 Ok, two flags hung in front of three windows.   

 

 

 

 

 

In this case, the recto-scope reading and the inverse scope reading are logically 

independent, neither entails the other. 
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This is evidence that a mechanism for recto and inverse scope must be part of the 

grammar. 

 

 

-Scope islands 

 A medal was given to every girl 

 A medal that was given to every girl was put in the museum. 

 

Unavailable reading:  (wide scope of every girl) 

x[Girl(x) → y[Medal(y)  z[Give(z,y,x)  PIM(y)]]] 

For every girl, there is a medal that was given to her and put in the museum. 

 

Available reading: (narrow scope of every girl) 

y[Medal(y)  x[Girl(x) → z[Give(z,y,x)]]  PIM(y)] 

Some medal was put in the museum and each girl was given that medal (say, in turn).  

 

Observation:   

-every girl can take wide scope over a medal if the latter is a co-argument of the 

verbal predicate 

-every girl cannot take wide scope out of a relative clause over the head of the relative 

a medal.   

Relative clauses are scope islands. 

 

 

5. De dicto-de re- ambiguity. 

Intensional contexts have scope. 

-Modals: may 

 

 (12) As far as I know, everybody may have done it. 

         a. x[may(DONE(x,it))] 

         b. may(x[DONE(x,it)]) 

 

Reading a.:  Beginning of a detective novel. 

Reading b.:  Towards the end in a famous detective novel by Agatha Christie. 

 

-Intensional verbs: try 

 (13) John tries to find a unicorn 

 

Representation, something like the following: 

         a. TRY(j,y[UNICORN(y)  FIND(j,y)])   [de dicto] 

         b. y[UNICORN(y)  TRY(j,FIND(j,y))] [de re]  

 

The de dicto reading does not entail that there is a unicorn:  

TRY-TO-FIND is not a relation between John and an actual unicorn, but a relation 

between John and the unicorn-property:  

John tries to bring himself in a situation where he has found an instance of the 

unicorn-property.  
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Situation 1:  you see John with a unicorn-detector searching the beach.   

You ask me: what is he doing.  I say: (13) John tries to find a unicorn. 

 

(13) is true on the de dicto reading, false on the de re reading 

 

 

 

The de re reading does entail that there is a unicorn: 

The sentence expresses that there is an actual unicorn, say, Fido, and John tries to 

bring himself in a situation where he has found Fido. 

 

 
Situation 2.  We are inside a Harry Potter style novel.  Unicorn Fido has escaped.  

John has always thought that Fido is Tricorn, he is too vain to wear glasses. But we 

are all looking for Fido.  A passerby asks me:  what is John doing.  I say  

(13) John tries to find a unicorn. 

 

(13) is true on the de re reading, false on the de dicto reading 

 

 

 

de dicto/de re readings are generally logically independent, although it may require 

some work to construct models that show that. 
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-Propositional attitude verbs: know, believe: 

 

 (14) John believes that a former soccer player was elected Governer. 

         a. BELIEVE(j, y[FSP(y)  EG(y)]) [de dicto] 

         b. y[FSP(y)  BELIEVE(j,EG(y))] [de re] 

 

Reading a:  

John reads in the newspaper: "The newly elected governer used to play Rambo." 

He thinks Rambo is a soccer team, and he tells me: "A former soccer player got 

elected governer."  I report what he told me to you: I say (14).  

 (14) John believes that a former soccer player was elected Governer. 

I report a belief of John about the property former soccer player:  in the world 

according to John, the newly elected governer is a former soccer player. 

(14) is true, even though John has no belief about any actual individual that that 

individual got elected governer.   

 

Reading b:   

John watched the Governer election, and saw there Arnold getting elected.  But he 

wasn't wearing his glasses, and he thought it was Johan Cruyff.  He thinks that Johan 

Cruyff got elected governer.  Not knowing any Dutch, but having seen Johan Cruyff 

on Dutch television a lot while zapping, he thinks that Johan Cruyff is the Dutch 

prime minister. 

John says to me:  "Johan Cruyff got elected governer."   

Now, I know very well who Johan Cruyff is, and that he is a famous former soccer 

player, but I don't know that John doesn't know that, and I do know that you don't 

know who Johan Cruyff is.  For the latter reason, I report what John said to me to you 

by saying (14). 

(14) John believes that a former soccer player was elected Governer. 

In this case, John would not himself accept: "A former soccer player got elected 

governer."  (He would accept: 'The Dutch prime minister got elected governer."). 

What I report to you by saying (14) is a belief of John about Johan Cruyff, about 

someone who actually is a former soccer player. 

 

The situations were chosen in such a way that in the first one the de dicto reading is 

true, but the de re reading false, while in the second situation the de re reading true, 

but the de dicto reading false.  So indeed, the two readings are logically independent 

(neither entails the other). 

This means that if we agree that (14) can be truthfully said in those two types of 

situations, there is an ambiguity that the grammar must account for. 
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XVI. GENERALIZED QUANTIFIERS  

 

I Quantifiers don’t bind variables. 

 

Frege/Tarski: 

Quantifier x or x does two things simultaneously: 

1. Frege:  It binds the occurrences of variable x free in its scope. 

    Tarski: It sets up a variation range for the truth value of its scope along the  

    variation of the value for variable x.  

2. Frege:  It expresses its lexical meaning. 

    Tarski: It expresses a constraint according to its lexical meaning on this variation  

                range. 

 

Modern semantic theories for natural language starting in the 1960s with the work of 

Richard Montague, reported in the posthumously published paper: Montague 1973: 

'The proper treatment of quantification in ordinary English.'  

Very similar ideas were developed roughly simultaneously in David Lewis' paper 

'General Semantics', published in 1970.   

The linguistic aspects of this work were strongly influenced by Montague’s 

interaction at the time with Barbara Partee, who, in the years after Montague’s death,  

put Montague style semantics on the map as a field in linguistics, and is pretty much 

‘the mother of our field’. 

 

Montague-Lewis: Successful compositional semantic analysis of natural language 

quantification becomes possible only when we realize that for  

natural language quantification the Frege/Tarski theory is wrong. 

(Note: Montague and Lewis do not say this explicitly, but it follows from their work) 

 

And what is wrong, is part one of the Frege/Tarski analysis of quantification: 

 

Montague-Lewis: Natural language quantifiers do not bind variables. 

(Montague doesn't say this explicitly, but it follows from the theory in Montague 

1973. Lewis is explicit about this.) 

 

For quantification in natural language, we must separate the setting up of Tarski's 

variable range from the lexical restriction on the variable range: quantifiers only do 

the latter.  

 

As it turns out, this separation is linguistically motivated both from the perspective of 

variable binding, and from the perspective of quantification. 

 

Variable Binding:  quantifiers do not bind variables, because variables are  

                                 already bound inside the scope of the quantifier. 
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Some linguistic evidence. 

 

1. Evidence from variables: reflexives. 

 

1a. Reflexives without quantificational binders. 

 

 (1) Every boy admires himself. 

       x[BOY(x) → ADMIRE(x,x)] 

       Frege/Tarski: The quantifier x binds the interpretation of the reflexive, 

         the third occurrence of x. 

Problems: 

-Non-quantificational subjects. 

 

 (2) John admires himself. 

                  ADMIRE(j,j) 

 

Intuitively, the interpretation of the reflexive is bound in (2) in the same way as it is in 

(1).  (i.e. we do have something of the form ADMIRE(α,α)) in the semantics). 

But there is no quantifier in (2) and no variable, and hence no binding operator. 

 

-No subjects. 

 (3) a. To admire oneself too much is regarded as vanity. 

       b. Excessive admiration of oneself is regarded as vanity. 

 

Intuitively, the reflexive is bound in the infinitive and in the noun phrase in the same 

way as it is in (1) and (2).   

(We need, in the semantics, something of the form ADMIRE(α,α)).   

But there is no subject, let alone a quantificational subject binding the reflexive. 

 

1b. Reflexives in VP-ellipsis.   

 

VP-ellipsis: 

 

 (4) John is smart and Mary is too. 

                           be smart               be smart 

                 John is smart and Mary is smart 

 

 (5) John kissed Ronya and Mary did too. 

    kiss Ronya                       kiss Ronya 

                  John kissed Ronya and Mary kissed Ronya. 

 

 (6) John likes himself and Mary does too. (sloppy identity reading) 

    like yourself                   like yourself 

                 John likes himself and Mary likes herself. 

 

 (6) Every boy likes himself and Every girl does too. 

              like yourself                         like yourself 

                 Every boy likes himself and Every girl likes herself. 
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Think about (6): 

 

 x[BOY(x) → LIKE(x,x)]  y[GIRL(y) → ?] 

 

What we want is a one-place predicate, the interpretation of like yourself in which the 

variable is bound: 

 

x[BOY(x) → like yourself(x)]  y[GIRL(y) → ?(y)] 

x[BOY(x) → like yourself(x)]  y[GIRL(y) → like yourself (y)] 

 

Lambda Notation (to be defined shortly): 

 x.(x) 

 The property that you have if  is true of you. 

 

 like yourself :   z.LIKE(z,z) 

   The property that you have if you like yourself. 

 

Equivalences: 

 

x[BOY(x) → LIKE(x,x)]  y[GIRL(y) → ?(y)] 

 

Equivalent in property form: 

  

x[BOY(x) → z.LIKE(z,z) (x)]  y[GIRL(y) → ?(y)] 

For every x if x is a boy then x has the like-yourself property 

 

x[BOY(x) →  z.LIKE(z,z)  (x)]  y[GIRL(y) → z.LIKE(z,z) (y)] 

 For every x if x is a boy then x has the like-yourself property and 

 For every y if y is a girl then y has the like-yourself property. 

 

Every boy likes himself: 

x[BOY(x) → LIKE(x,x)] 

x[BOY(x) → z.LIKE(z,z) (x)] 

every:  x[------(x) → --------------(x)] 

                  BOY          z.LIKE(z,z)  

 

every relates two one-place predicates: 

 

 EVERY(BOY, z.LIKE(z,z)) 

 

But then, the crucial observation is: 

 

The quantifier doesn’t bind any variables,  

because variables like reflexives are already bound (in the predicate, by  

the -operator). 
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A footnote on strict readings 

 

Background: pronouns 

(1)  John likes his mother and Mary does too. 

1. Sloppy reading:  John likes John’s mother and Mary likes Mary’s mother. 

2. Strict reading:     John likes John’s mother and Mary likes John’s mother. 

 

Our argument is not directly concerned with the interpretation of strict/sloppy identity 

for pronouns.  We are interested in reflexives because these need to be bound.  We saw: 

 

(2) John likes himself, and Mary does too 

 1. Sloppy reading:  

  λz.LIKE(z,z)(j) ∧ ?(m) 

  λz.LIKE(z,z)(j) ∧ λz.LIKE(z,z)(m) 

  LIKE(j,j) ∧ LIKE(m,m) 

 

(3) Every boy likes himself, and Every girl does too 

 1. Sloppy reading:  

  ∀x[Boy(x) → λz.LIKE(z,z)(x)] ∧ ∀y[GIRL(y) → ?(y)] 

  ∀x[Boy(x) → λz.LIKE(z,z)(x)] ∧ ∀y[GIRL(y) → λz.LIKE(z,z)((y)] 

  ∀x[Boy(x) → LIKE(x,x)] ∧ ∀y[GIRL(y) → LIKE(y,y)] 

 

The question is: are there strict readings for reflexives? 

We don’t expect any such reading for examples like (3), but what about (2): 

 

(2) John likes himself, and Mary does too 

 2. Strict reading:  

  LIKE(j,j) ∧ LIKE(m,j) 

Strict readings are often harder to get, but they are possible. 

From the literature: 

(4) Bill defended himself before John did. 

 

Huge literature in syntax and semantics.  But note the following: 

 John likes himself 

A λz.LIKE(z,z)(j)  ⇔ 
B LIKE(j,j)  ⇔ 

C λz.LIKE(x,j)(j) 

 

The C form is not simply an entailment but is equivalent to A and B. 

While we don’t assume that what can be reconstructed as the meaning of the elided 

VP can be any entailed property of the subject, the relation between A and C is, of 

course, much closer.  If we assume that, under contextual stress, the equivalence 

between A, B and C can be used to reconstruct the VP property, we can derive: 

 

 John likes himself and Mary does too 

 λz.LIKE(x,j)(j) ∧ λz.LIKE(x,j)(m) 

 LIKE(j,j) ∧ LIKE(m,j) 
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1c. Pronouns ‘bound’ by quantifiers that cannot bind them: Functional readings. 

 

As before, we add the definite operator to the logical language: 

 

If P ∈ PRED1, then σ(P) ∈ TERM 

 

     d   if ⟦P⟧M,g = {d} 

 ⟦σ(P)⟧M,g =  

      undefined  otherwise 

 

(7)  The woman that every Englishman adores most is his mother. 

  

Meaning of (7): 

 

        x[ ENGLISHMAN(x)  →  

            For  every englishman 

          (y.WOMAN(y)  ADORE-MOST(x,y))    =      (y. Mother-of(y,x )) ] 

          The   woman he adores most                            is      his mother 

 

To read this formula, read the predicates first: 
 

y.WOMAN(y)  ADORE-MOST(x,y))  

the property you have if you are a woman and x  adores you most 

 

y. Mother-of(y,x )  

The property that you have if you are x 's mother 

 

σ is the definiteness operator, so: 

 

σ(y.WOMAN(y)  ADORE-MOST(x,y)))  

The woman that x  adores most 

 

σ(y. Mother-of(y,x ))    

The mother of x 

  

σ(y.WOMAN(y)  ADORE-MOST(x,y))) = σ(y. Mother-of(y,x )) 

The woman that x  adores most is the mother of x. 

  

Problem:  this involves scoping every englishman out of the relative clause that every 

Englishman adores. 

But we have seen that expressions like every englishman cannot scope out of relative 

clauses, since relative clauses are scope islands. 
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(7)  The woman that every Englishman adores most is his mother. 

 

                                               IP    

     

DP      I’ 

 

DET  NP           I         DPPRED 

 

the N   CP         is  DET  N  

 

         woman   C  IP                          his           mother  

 

                       that DP  I’ 

 

         D          NP       adores-most  

 

               every      englishman 

 

 

 

 

∀x[ENGLISHMAN(x) →     IP    

     

DP      I’ 

 

DET  NP           I         DPPRED 

 

the N   CP          is  DET  N  

       =  

         woman   C  IP                         his           mother  

        σ(λy.MOTHER(y,x)) )] 
                       that DP  I’ 

 

         D          NP       adores-most  

 

               every      englishman 

( σ(λy.WOMAN(y) ∧ ADORES(x,y)            

 

Problem:  in order to bind the variable x in his mother, every englishman must be 

given scope out of the relative clause scope island. 
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Alternative analysis:  Functional readings. 

 

(7) is analyzed as an equation of two functions f and g, both of which are functions 

from individuals to individuals: 

 f,g: DM → DM  

 

The woman that every Englishman adores most 

Interpretation:  The function f that maps every Englishman onto the woman that he    

                         adores most. 

 

his mother 

Interpretation: The function that maps every individual onto his/her mother.    

 

We can represent these readings also with help of the λ-operator.  We interpret the 

expression his mother (one's mother) as: 

 

g x. (y.MOTHER(y,x))   

We read this as:  

the function that maps every individual x onto (y.MOTHER(y,x)), the mother of x. 

f  x   ENGLISHMEN: σ(y.WOMAN(y)  ADORE(x,y))) 

We read this as:  

the function that maps every englishman x onto the woman that x adores most. 

 

 (7)  The woman that every Englishman adores most is his mother. 

 

Semantics:  We restrict the mother function to the common domain, englishmen: 

 

 when restricted to their common domain:  

 

g↾ENGLISHMEN  =  x  ENGLISHMEN: (y.MOTHER(y,x)) 

We read this as: 

the function that maps every englishman onto his mother. 

 

And (7) is interpreted as (8): 

 

(8)  f = g↾ENGLISHMEN 

 

or explicitly: 

 

(8) x   ENGLISHMAN: σ(y.WOMAN(y)  ADORE(x,y))) 

     = 

x  ENGLISHMAN: (y.MOTHER(y,x)) 

 

(7) then expresses that the function that maps every Englishman onto the woman he 

adores is the function that maps every Englishman onto his mother. 

 

It turns out that an elegant compositional semantics can be given that derives for the 

woman that every Englishman adores this functional interpretation f, without giving 

every Englishman wide scope out of the relative clause.   

(7)  The woman that every Englishman adores most is his mother. 
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                                               IP    

     

DP      I’ 

 

DET  NP           I         DPPRED 

 

the N   CP         is  DET  N  

             =  

         woman   C  IP                          his           mother  
              x  [ENGLISHMAN]: (y.MOTHER(y,x)) 

                       that DP  I’ 

 

         D          NP       adores-most  

 

               every      englishman 
     x   ENGLISHMAN: σ(y.WOMAN(y)  ADORE(x,y)))  

 

 

 

 

An analysis in terms of functional readings along those lines is generally assumed to 

be the correct way of analyzing cases like (7). 

 

But this means, again, that the pronoun his in his mother in (7) is not bound by the 

quantifier every Englishman at all.  It is bound inside the expression his mother: 

The interpretation of his mother is the function denoted by the expression: 

 

x. (y.MOTHER(y,x) 

The function that maps every x onto x’s mother 

 

and the pronoun his is bound by the -operator in this expression. 

 

Which of his relatives does every Englishman admire most? 

Groenendijk and Stokhof, Engdahl, ca. 1980 

 

So, by introducing the λ-operator, we can separate quantification and variable 

binding. 

 

The facts about variables suggest that we should. 
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2. Evidence from quantification. 

 

Applying the Frege/Tarski's analysis of quantifiers to natural language quantifiers has 

well known problems. 

-There is no good theory of the restricting effect of the noun: 

 

 Every cat is smart. 

 x[CAT(x) → SMART(x)] 

 Some cat is smart. 

 x[CAT(x)  SMART(x)] 

 

Sometimes you use →, sometimes you use .  There is no theory of when you use the 

one and when the other. 

For  and , this is not a very serious problem, since we can introduce restricted 

quantifiers (which do not increase the power of the language at all): 

 

 If x is a variable and φ a formula, P a one-place predicate, then 

 x  P: φ and x  P: φ are formulas. 

 

 ⟦x  P: φ⟧M,g = 1 iff for every d  ⟦P⟧M,g: ⟦φ⟧M,gx
d = 1; 0 otherwise 

 ⟦x  P: φ⟧M,g = 1 iff for  some d  ⟦P⟧M,g: ⟦φ⟧M,gx
d = 1; 0 otherwise 

 

 Every cat is smart. 

 x[CAT(x) → SMART(x)] 

 ∀x ∈ CAT: SMART(x) 

 

 Some cat is smart. 

 x[CAT(x)  SMART(x)] 

 ∃x ∈ CAT: SMART (x) 

 

But what about other quantifiers? 

 

 Most cats are smart 

 Mx[CAT(x) ? SMART(x)] 

 Mx  CAT: SMART(x) 

 

Try: Mx[CAT(x)  SMART(x)] 
         Mx[CAT(x) → SMART(x)] 
 

You can prove that there is no Frege/Tarski quantifier Mx and connective ? 

that get the truth conditions of Most cats are smart right. 

You can prove that there is no restricted Frege/Tarski quantifier over individuals 

MxCAT that gets the truth conditions of Most cat are smart right. 

 

This requires, of course, a proper definition of a 'quantifier over individuals', but it 

reflects the intuition about the semantics of most: most compares the cardinalities of 

two sets of individuals.   
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Montague and Lewis solve these problems by using a different perspective on 

quantifiers introduced in logic in the 1950s by Andrej Mostowski, that of 

generalized quantifiers.   

 

I will introduce the theory here as a theory of generalized quantificational 

determiners, by which we mean expressions like every, some, no, most, at least 

three, etc. 

The idea is very simple:   

 

 Determiners like every do not express Frege/Tarski quantifiers at all, they  

 express relations between sets of individuals.  

 

Analogy: 

 

                   S                                                                  S 

 

 

 

DP                              VP                     DP                            VP 

John                                         walk 

                   

                      V                         DP    D          N 

                      kiss                  Mary      Every                 Boy 

            1  2        1 

                                2       

       

V is a 2 place relation                D is a 2 place relation  

between individuals                     between sets of individuals 

 

This idea combines in the following way with the analysis of predicates discussed 

above.  We argued that in every boy admires himself, the noun phrase every boy or the 

determiner every does not bind the reflexive variable at all, that variable is already 

bound in the predicate, admires himself.   

We analyzed that with the variable binding operation λx: 

 admires himself is interpreted as λx.ADMIRE(x,x). 

 

We are not doing without the Frege/Tarski analysis of variable binding: 

the semantic interpretation of  λx.ADMIRE(x,x) is built, semantically, from Tarski's 

variable range. 

 

  

 <gx
d1, ⟦ADMIRE(x,x)⟧

M,gx
d1> 

 <gx
d2, ⟦ADMIRE(x,x)⟧

M,gx
d2> 

 <gx
d3, ⟦ADMIRE(x,x)⟧

M,gx
d3> 

 ... for every d  DM 
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The variable range is a function from assignments gx
d, with d  DM to truth values.   

Mathematically, we can identify this with a function from objects d  DM to truth 

values: 

 

 <d1, ⟦ADMIRE(x,x)⟧
M,gx

d1> 

 <d2, ⟦ADMIRE(x,x)⟧
M,gx

d2> 

 <d3, ⟦ADMIRE(x,x)⟧
M,gx

d3> 

 ... for every d  DM 

 

And mathematically, we can identify this with the set characterized by this function: 

 

 {d  DM: ⟦ADMIRE(x,x⟧M,gx
d = 1}  

 

But this is precisely  the interpretation of λx.ADMIRE(x,x). 

  

From this we derive the all important conclusion: 

 Tarski's value ranges can be identified with sets of individuals. 

 

Now the two theories come together: 

 

-Predication formation on ADMIRE(x) binds variable x to abstraction operator λx.   

 This forms a set of individuals, equivalent to the Tarski value range of  

 ADMIRE(x,x): the set of individuals that admire themselves. 

 

-The determiner meaning every in every boy expresses a restriction on this   set,  

  a restriction which relates it to the set which is the noun interpretation, the set  of  

  boys. 

 

In sum, then, we get: 

 

 EVERY[BOY,λx.ADMIRE(x,x)] 

 

The semantics of determiner every expresses a constraint on the relation between the 

set of boys and the set of self-admirers. 

 

We have now separated variable binding from quantification:   

-variable binding is what Tarski assumed it was, except that it is done by operation 

λx, and not by quantifiers. 

-quantificational determiners express relations between sets of individuals. 

 

The advantage of this perspective for quantificational determiners is that it provides a 

unified theory of natural language quantification:  in this perspective we can study the 

semantic contribution of any determiner element, and, importantly, we can formulate 

semantic generalizations about the meanings of classes of determiners. 

 

While developed by Montague and Lewis, the theory was first formulated as a theory 

of semantic generalizations about classes of determiners by Jon Barwise and Robin 

Cooper in 1981 in a paper called 'Generalized quantifiers and natural language'. 
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II THE LANGUAGE L5:  PREDICATE LOGIC EXTENDED WITH 

GENERALIZED QUANTIFIERS 

 

For comparison reasons, we don't redefine quantification along the lines indicated 

here, but add the new approach to predicate logic. 

Our language L5 has the same syntax as L4, but with the following additions: 

 

DET = {EVERY, SOME, NO, n, AT MOST n, AT LEAST n, EXACTLY n,  

               MOST} where n ∈ ℕ and n > 0. 

DET  LEX 

 

Abstraction: 

If x  VAR and φ  FORM, then λx.φ  PRED1 

  

Quantification: 

If α  DET and P,Q  PRED1, then α[P, Q]  FORM 

 

EXIST: 

EXIST  PRED1 

 

The semantics for L5 is exactly the same as for L4 with the following additions: 

 

 For every α  DET: ⟦α⟧M,g = FM(α) 

 

 If x  VAR and φ  FORM, then: 

 ⟦λx.φ⟧M,g = {d  DM: ⟦φ⟧M,gx
d = 1} 

 

 If α  DET and P,Q  PRED1, then: 

 ⟦α[P, Q]⟧M,g = 1 iff < ⟦P⟧M,g, ⟦Q⟧M,g >  ⟦α⟧M,g  

 

 ⟦EXIST⟧M,g = DM 

 

The existence predicate will be useful in some of the technical discussions  below. 

This leaves the specification of the new lexical items, the determiners: 

 

 For every α  DET: FM(α)  pow(DM)  pow(DM) 

 Every determiner is interpreted as a relation between sets of individuals. 
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FM(EVERY)   = {<X,Y>: X,Y  DM and X  Y} 

EVERY[CAT, SMART] 

       DM 

 

 

  

         CAT     SMART   

 

 

 

 

 

FM(SOME)     = {<X,Y>: X,Y  DM and X  Y  Ø} 

SOME[CAT, SMART] 

       DM 

 

 

  

         CAT     SMART   

 

 

 

 

 

FM(NO)          = {<X,Y>: X,Y  DM and X  Y = Ø} 

NO[CAT, SMART] 

       DM 

 

 

  

         CAT     SMART   

 

 

 

 

FM(AT LEAST n) = {<X,Y>: X,Y  DM and |X  Y| ≥ n} 

AT LEAST 3[CAT, SMART] 

       DM 

 

 

  

         CAT   ()   SMART   
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FM(AT MOST n)  = {<X,Y>: X,Y  DM and |X  Y| ≤ n} 

AT MOST 3[CAT, SMART] 

       DM 

 

 

  

         CAT   ()      SMART   

 

 

 

 

 

FM(n)    = FM(AT LEAST n) 

 

FM(EXACTLY n)  = {<X,Y>: X,Y  DM and |X  Y| = n} 

EXACTLY 3[CAT, SMART] 

       DM 

 

 

  

         CAT         SMART   

 

 

 

 

 

 

FM(MOST)  = {<X,Y>: X,Y  DM and |X  Y| > |X − Y|} 

MOST[CAT, SMART] 

       DM 

 

 

  

         CAT         SMART   
                                                
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We can now prove useful things: 

 

 EVERY[CAT, SMART] ⇔ x[CAT(x) → SMART(x)] 

 

 EVERY[CAT, λx.ADMIRE(x,x)] ⇔ x[CAT(x) → ADMIRE(x,x)] 

 

 SOME[CAT, SMART] ⇔ x[CAT(x)  SMART(x)] 

 

 NO[CAT, SMART] ⇔ x[CAT(x)  SMART(x)] 

  

AT LEAST 2[CAT, SMART] ⇔ 

  xy[CAT(x)  CAT(y)  SMART(x)  SMART(y)  (x  y)]  

 etc. 

 

MOST[CAT, SMART] is not equivalent to any L4 sentence. 

 

 EVERY[BOY, λx.SOME[GIRL, λyKISS(x,y)]] ⇔ 

  x[BOY(x) → y[GIRL(y)  KISS(x,y)]] 

 

SOME[GIRL, λy.EVERY[BOY, λx.KISS(x,y)]] ⇔ 

y[GIRL(y)  x[BOY(x) → KISS(x,y)}} 
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Excursus: A note on most 

Our semantics: 

 

MOST[A, B]: |A  B| > |A – B| 

most A's are B's is true if there are more A's that are B's than A's that are not B. 

 

An obvious alternative: 

 

MOST[A, B]: |A  B| > ½|A| 

most A's are B's is true if more than half of the A's are B's 

 

Is there a difference? Not on finite domains, obviously. 

But do we native speakers have intuitions about infinite domains? 

Cantor told us that there are as many even natural numbers as there are natural 

numbers,  

but do we have an intuition that (1) below is false (as it is according to our semantics), 

rather than infelicitous (as it is, if we assume that ½|A| is not defined, if |A| is infinite)? 

 

(1) Most natural numbers are even. 

 

I don't think we do,  

but – interestingly enough – we do have intuitions about comparison between finite 

and infinite sets, as in (2): 

 

(2) Most prime numbers are odd. 

 

 In (2) we are comparing the cardinality of the set of odd primenumbers (infinite) and 

the cardinality of the set of even primenumbers (one).   

We have no problem counting (2) as true.   

 

This is predicted by our semantics of most,  

but interestingly enough, not by an analysis that assume that ½|A| is infelicitous if |A| 

is infinite, or an analysis that assumes that for infinite sets ½|A| = |A| .   

Either analysis predicts incorrectly that (2) is infelicitous or false. 

 

End of excurses 
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With this new logical language, we can now analyze many new inference patterns, 

like: 

 

 {(1),(2),(3)}⇒(4) 

(1) There are exactly 10 apples 

(2) Every apple is either green or red, not both 

(3) Most apples are green 

Hence: 

(4) At most 4 apples are red 

 

(1) EXACTLY 10[APPLE, EXIST] 

(2) EVERY[APPLE, λx.(GREEN(x)  RED(x))  (GREEN(x)  RED(x))]  

(3) MOST[APPLE, GREEN] 

hence: 

(4) AT MOST 4[APPLE, RED] 

                                                                                               DM 

 

           GREEN   RED 

 

             

     6∨7∨8∨9∨10    0∨1∨2∨3∨4 

 

 

                 APPLE 
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SKETCH OF THE SEMANTICS FOR PARTIAL DETERMINERS. 

 

Note: the analysis is tailored to later discussion  in this chapter. It would be better 

formulated in a theory that also deals with semantic plurality, but such a theory is only 

sketched at the end of this class.  The present analysis does not treat collective 

readings at all. 

  

We add to the lexicon a special set of determiners: 

 

DETP = {THE. BOTH, NEITHER} 

 

We have the same syntactic rule for DETp as for DET: 

 

If α  DETp and P,Q  PRED1, then α[P, Q]  FORM 

 

We add to the models an interpretation function pair <FM
+,FM

−>, where FM
+ and FM

− 

are functions from DETp to pow(pow(DM)  pow(DM), specified below, we call them 

the positive extension and the negative extension. 

 

We add the following interpretation rules: 

 

 If α  DETp and P,Q  PRED1, then: 

 

    1   if <⟦P⟧M,g, ⟦Q⟧M,g >  FM
+(α)  

     

 ⟦α[P, Q]⟧M,g
  =  0   if <⟦P⟧M,g, ⟦Q⟧M,g >  FM

−(α) 

     

    ⏊ (undefined ) otherwise 

     

 

Now we specify the lexical meanings of the partial determiners. 

In fact, we give here a schema for their interpretation: 

 

If α ∈ DETP  then: 

 

 FM
+(α) = {<X,Y>: X,Y  DM and    φ(X,Y) and presX} 

 FM
−(α) = {<X,Y>: X,Y  DM and ¬φ(X,Y) and presX} 

 

So, both the positive extension and the negative extension have the same 

presuppositional clause which depends on the noun argument that the determiner 

combines with.  When the presupposition is satisfied, the constraint on FM
+(α) is that 

some condition φ(X,Y) holds, and on FM
―(α) that that clause φ(X,Y) does not hold. 
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This means for the truth conditions that: 

 

⟦α[P, Q]⟧M,g
  = 1 iff     φ(⟦P⟧M,g,⟦Q⟧M,g) and presP 

 
⟦α[P, Q]⟧M,g

  = 0 iff  ¬φ(⟦P⟧M,g,⟦Q⟧M,g) and presP 

 

 
⟦α[P, Q]⟧M,g

  = ⏊ iff  ¬presP 

 

 

We start with partial determiner THE: 

 

FM
+(THE) = {<X,Y>: X,Y ⊆ DM and X ⊆ Y  and presX} 

FM
―(THE) = {<X,Y>: X,Y ⊆ DM and X ⊈ Y and presX} 

 

The semantics if THE is the same as that of EVERY:  φ(X,Y)  =  X ⊆ Y.  

As we see in the plural cases, this means that the interpretation we generate is the 

distributive interpretation. 

 

The presupposition of the partial determiner THE depends on the interpretation of the 

noun.  To analyse these noun interpretations properly, we need a theory of plurality, 

which, as said, I am not giving here. But the idea is quite simple: 

 

the cat    presCAT        =  |CAT| = 1 

 

THE[CAT, SMART] is true  if every cat is smart       and there is exactly one cat. 

THE[CAT, SMART] is false if not every cat is smart and there is exactly one cat. 

(meaning: that cat isn't smart) 

THE[CAT, SMART] is undefined if there isn't exactly one cat. 

 

the two cats   presTWO CATS            =  |CAT| = 2 

 

THE[TWO CATS, SMART] is true  if every cat is smart       and there are exactly 2 cats. 

THE[TWO CATS, SMART] is false if not every cat is smart and there are exactly 2 cats. 

THE[TWO CATS, SMART] is undefined if there aren't exactly 2 cats. 

 

the more than two cats presMORE THAN TWO CATS   =  |CAT| > 2 

 

THE[MORE THAN TWO CATS, SMART] is true  if 

 every cat is smart       and there are more than 2 cats. 

THE[MORE THAN TWO CATS, SMART] is false if 

            not every cat is smart  and there are more than 2 cats. 

THE[MORE THAN TWO CATS, SMART] is undefined if there aren't more than 2 cats. 

 

We will see later that in the semantics for plurality these presuppositions fall out of 

the theory naturally. 
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FM
+(BOTH) = {<X,Y>: X,Y  DM and  XY and |X|=2} 

FM
−(BOTH) = {<X,Y>: X,Y  DM and  X⊈Y and |X|=2} 

 

φ and ψ are strongly equivalent iff they are true in the same models and false  

in the same models. 

 

We can show: 

 

BOTH[CATS, SMART] and THE[TWO CATS, SMART] are strongly equivalent  

THE[CAT, SMART] and THE[ONE CAT, SMART] are strongly equivalent. 

 

We saw that both has the φ(X,Y)-clause of every. 

Neither has the φ(X,Y)-clause of no: 

 

FM
+(NEITHER) = {<X,Y>: X,Y  DM and X  Y = Ø  and |X|=2} 

FM
−(NEITHER) = {<X,Y>: X,Y  DM and X  Y ≠ Ø and |X|=2} 

 

 

NEITHER[CAT, SMART] is true if  no cat is smart     and there are exactly two cats. 

NEITHER[CAT, SMART] is false if some cat is smart and there are exactly two cats. 

NEITHER[CAT, SMART] is undefined if there aren't exactly two cats. 

 

 

 

FEW AND MANY. 

Lots of literature.  Here, unsatisfactory analysis that only deals with the simplest 

cases. 

 

 FM(FEW) =      {<X,Y>: X,Y  DM  |XY| < fC(X,Y)} 

 FM(MANY) =  {<X,Y>: X,Y  DM  |XY| > mC(X,Y)} 

 

Here f is a contextual function that determines, in context a number that counts as 

few.  Which number this is is contextually determined, and can depend on X, on Y, on 

both, or even on a comparison set C distinct from X and Y. 

Similarly, m is a contextual function that determines, in context, a number that counts 

as many. 

 

Given this semantics,  

we expect  

FEW[CAT, SMART] to pattern semantically in some ways like  

AT MOST n[CAT, SMART],  

and we expect  

MANY[CAT, SMART] to pattern semantically in some ways like  

AT LEAST n[CAT, SMART],  

and this is the prediction that interests us here. 

 

There is much more to be said and done about the semantics of few and many (i.e. 

readings that are harder to fit in).  The semantics given here is introduced here mainly 

for comparison reasons later.  
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III GENERAL CONSTRAINTS ON DETERMINER INTERPRETATION. 

[Jon Barwise, Robin Cooper, Ed Keenan, Johan van Benthem] 

 

With some notorious problematic cases, discussed in the literature (eg. few, many, 

only as in only cats are smart), natural language determiners all satisfy the following 

principles of extension, conservativity and quantity (van Benthem 1983)  

 

EXTENSION 

 

 Determiner α satisfies extension iff for all models M1, M2 and  

for all sets X,Y such that X,Y  DM1
 and X,Y  DM2

: 

 <X,Y>  FM1
(α) iff <X,Y>  FM2

(α) 

 

 If you assign CAT and SMART the same interpretation in models M1 and M2, 

 then α[CAT,SMART] has the same truth value in M1 and M2. 

 

Let FM1
(P) = FM2

(P) = X and FM1
(Q) = FM2

(Q) = Y. 

If α satisfies extension, then the truthvalue of α[P, Q] depends only on what is in 

XY, not on what is in DM1
 − (XY) or in DM2

 − (XY). 

 

The intuition is the following: 

If α satisfies extension then, if we only specify of a model FM(CAT) and 

FM(SMART), the truth value of α[CAT, SMART] in M is already determined. 

 

This is a natural constraint on natural language determiners: 

The truth value of every cat/some cat/no cat/most cats…is/are smart does not depend 

on the presence or absence of objects that are neither cats nor smart. 

 

In a picture: 

       DM 

 

 

  

         CAT     SMART   

 

 

 

 

If α satisfies extension then only what is inside CAT  SMART is relevant for the 

truth of α[CAT,SMART] 

       DM 

 

 

  

         CAT     SMART   
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So:  relevant is: 

 

 

  

         CAT     SMART   

 

 

Extension:  if we extend the domain with stupid dogs, the truth value of 

α[CAT,SMART] is unaffected. 

 

Note:  the context dependency of many affects judgements for examples like many 

cats are smart.  The more stupid dogs you add, the fewer cats you need to say: well, 

actually many cats are smart. 

 

 

CONSERVATIVITY 

 

Determiner α is conservative iff for every model M and for all sets X,Y  DM: 

   <X,Y>  FM(α) iff <X, XY>  FM(α) 

 

(Barwise and Cooper terminology:  α is conservative iff in α[X, Y] α lives on X) 

 

There is another formulation of conservativity and extension, which is useful: 

 

 Determiner α satisfies extension and conservativity iff  

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that 

X1, Y1  DM1  and X2, Y2   DM2  : 

 If X1  Y1 = X2  Y2 and X1 − Y1 =  X2 − Y2 then  

 <X1,Y1>  FM1
(α) iff <X2,Y2>  FM2

(α). 

 

 If you let x.CAT(x)  SMART(x) and x.CAT(x)  SMART(x) have the  

same interpretation in M1
 and M2 then α[CAT, SMART] has the same  

truth value in M1 and M2.   

 

Let FM1
(P) = X1 and FM2

(P) = Y1 and FM1
(Q) = X2 and FM2

(Q) = Y2. 

If α satisfies extension, and conservativity, then the truthvalue of α[P, Q] depends 

only on what is in X1  Y1 (= X2  Y2) and in X1 − Y1 (= X2 − Y2). 

 

The intuition is the following: 

If α satisfies extension and conservativity, then if we specify of a model M, not even  

what FM(CAT) and FM(SMART) are, but only what FM(CAT)  FM(SMART) and 

FM(CAT) − FM(SMART) are, then still the truth value of α[CAT, SMART] in M is 

already determined. 
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This is a natural constraint on natural language determiners: 

The truth value of every cat/some cat/no cat/most cat…is/are smart does not depend 

on the presence or absence of objects that are neither cats nor smart, and also not on 

the presence or absence of smart cookies that are not cats:   

it only depends on  

what is in the set of cats that are smart,  

and  

what is in the set of cats that are not smart. 

In a picture: 

 

  

         CAT−SMART  CAT  SMART   SMART − CAT   

 

 

If α satisfies extension and monotonicity, then only CAT  SMART and  

CAT – SMART are relevant for the truth of α[CAT,SMART] 

 

 

  

         CAT−SMART  CAT  SMART      

 

 

Conservativity can be checked in the following pattern: 

 

 α is conservative iff α[CAT, SMART] is equivalent to  

α[CAT, λx.CAT(x)  SMART(x)] 

 

α cat is smart iff α cat is a cat that is smart 

α cats are smart iff α cats are cats that are smart 

cf: 

 Every cat is smart iff Every cat is a smart cat 

 Most cats are smart iff Most cats are smart cats 

 No cats are smart iff No cats are smart cats 

 

Again problematic are context dependent quantifiers like many: 

cf. Surprisingly many Swedes are Nobelprize winners.   ≠  

    Surprisingly many Swedes are Swedish Nobelprize winners. 

 

Other classical problem:  only 

 Only cats purr  ≠ 

 Only cats are purring cats 

But only here is probably a DP modifier. Only the boys came to the party. 
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QUANTITY (Independent definition technically complex, see literature) 

 

 Determiner α satisfies extension and conservativity and quantity iff  

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that 

X1, Y1  DM1  and X2, Y2   DM2  : 

 If |X1  Y1| = |X2  Y2| and |X1 − Y1| =  |X2 − Y2| then  

 <X1,Y1>  FM1
(α) iff <X2,Y2>  FM2

(α). 

 

 If you let each of x.CAT(x)  SMART(x) and x.CAT(x)  SMART(x)  

 have the same cardinality in M1 as it has in M2, then α[CAT, SMART]  

 has the same truth value in M1 and M2. 

 

Let FM1
(P) = X1 and FM2

(P) = Y1 and FM1
(Q) = X2 and FM2

(Q) = Y2. 

If α satisfies extension, and conservativity and extension , then the truthvalue of 

α[P,Q] depends only on the cardinality of X1  Y1 (= |X2  Y2|) and the cardinality 

of X1 − Y1 (= |X2 − Y2|). 

 

The intuition is the following: 

If α satisfies extension and conservativity and quantity, then if we specify of a model 

M, not even what FM(CAT) and FM(SMART) are, and not even what  

FM(CAT)  FM(SMART) and FM(CAT) − FM(SMART) are, but only what  

|FM(CAT)  FM(SMART)| and |FM(CAT) − FM(SMART)| are 

then still the truth value of α[CAT,SMART] in M is already determined. 

 

This is a natural constraint on natural language determiners: 

The truth value of every cat/some cat/no cat/most cats…is/are smart does not depend 

on the presence or absence of objects that are neither cats nor smart, and also not on 

the presence or absence of smart cookies that are not cats; it doesn't even depend on 

what is in the set of smart cats, and what is in the set of non-smart cats,  

but only on  

how many things there are in the set of smart cats  

and on  

how many things there are in the set of non-smart cats. 

 

In a picture: 

 

 

       where n = |CAT  SMART|  

        n             m     where m = |CAT – SMART| 

 

 

For determiners that satisfy extension, conservativity and quantity we can set up the 

semantics in the following more general way. 

 

The independent definition of quantity is formulated in terms of permutations:  if you 

take objects out of CAT ∩ SMART and replace them by the same number of other 

objects, the truth value stays the same, the same for CAT ― SMART. 
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With these constraints we are now in a position to characterize the meanings of 

determiners more narrowly. 

 

We let the model M associate with every determiner α that satisfies extension, 

conservativity and quantity a relation rα between numbers.   

We associate for every model the same relation rα with α.   

 

In terms of this, we define FM(α) in the following schema for all natural language 

determiners that satisfy extension, conservativity and quantity: 

(excluding possessive determiners phrases) 

 

Determiner α  is an ECQ determiner iff α satisfies extension, conservativity and 

quantity 

 

Let α be an ECQ determiner. 

 

 FM(α) = { <X,Y>: X,Y ⊆ DM and <|XY|, |X−Y|)>  rα} 

 

Given this, the meaning of the determiner α is now reduced to the relation rα between 

numbers.  These meanings we specify as follows: 

 

 rEVERY  = {<n,0>: n  ℕ} 

 rSOME  = {<n,m>: n,m  ℕ and n0} 

 rNO  = {<0,m>: m  ℕ} 

 rAT LEAST k = {<n,m>: n,m  ℕ and n≥k} for k  ℕ 

 rAT MOST k = {<n,m>: n,m  ℕ and n≤k} for k  ℕ 

 rEXACTLY k = {<k,m>: m  ℕ}  for k  ℕ 

 rMOST  =  {<n,m>: n,m  ℕ and n>m} 

 

 

Let FM(cat)= CAT  and FM(smart) = SMART, with CAT, SMART ⊆ DM 

 

 

⟦α[cat, smart]⟧M,g = 1 iff <CAT, SMART> ∈ FM(α) iff  

                                         <|CAT ∩ SMART|, |CAT ― SMART|> ∈ rα 
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⟦every [cat, smart]⟧M,g = 1 

<CAT, SMART> ∈ FM(every)    iff 

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ rEVERY   iff 

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ {<n,0>: n  ℕ}  iff 

|CAT ∩ SMART| ∈ ℕ and |CAT ― SMART| = 0   iff 

|CAT ― SMART| = 0       iff 

CAT ⊆ SMART        

 

⟦some [cat, smart]⟧M,g = 1 

<CAT, SMART> ∈ FM(some)       iff 

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ rSOME      iff 

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ {<n,m>: n  ℕ, m ∈ ℕ and n≠0}  iff 

|CAT ∩ SMART| ∈ ℕ  |CAT ― SMART| ∈ ℕ and |CAT ∩ SMART| ≠ 0  iff 

|CAT ∩ SMART| ≠ 0         iff 

CAT ∩ SMART  ≠ Ø  

 

⟦most [cat, smart]⟧M,g = 1 

<CAT, SMART> ∈ FM(most)        iff 

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ rMOST     iff 

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ {<n,m>: n  ℕ, m ∈ ℕ and n>m}  iff 

|CAT ∩ SMART|  >  |CAT ― SMART|  

 

 

rEVERY(CAT, SMART)  iff   |CAT ― SMART| = 0 iff   CAT ⊆ SMART 

rSOME(CAT, SMART)  iff   |CAT ∩ SMART| ≠ 0 iff   CAT ∩ SMART ≠ Ø 

rNO(CAT, SMART)   iff   |CAT ∩ SMART| = 0 iff   CAT ∩ SMART =  Ø  

rAT LEAST k(CAT, SMART)  iff   |CAT ∩ SMART| ≥ k 

rAT MOST k(CAT, SMART)  iff   |CAT ∩ SMART| ≤ k 

rEXACTLY k(CAT, SMART)  iff   |CAT ∩ SMART| = k  

rMOST(CAT, SMART)  iff   |CAT ∩ SMART|  > |CAT ― SMART|  
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Some facts about the cardinality of the set of all relations between sets of individuals 

and the cardinality of the set of all such relations satisfying extension, conservativity 

and quantity: 

 

k! = 1 + … + k = 
k ×(k+1)

2
 (Gauss 100! = 5,050) 

 

RELM  = pow(pow(DM) £ pow(DM)) 

RELM is the set of all relations between sets of individuals in DM 

 

If |DM| = n 

Then |pow(DM)| = 2n   2n   distinct properties 

 

Then |pow(DM) £ pow(DM)| =2(2n)    

                                                         

Then |pow(pow(DM) £ pow(DM))| = 2(2(2n))   
 

So: 

|DM| = 1 |RELM| = 16    distinct relations between sets on a domain of 1 ind. 

|DM| = 2 |RELM| = 65.536                                                                          2 ind 

|DM| = 3 |RELM| = 264         (Famous from the Chinese chessboard) 

 

So this is the total number of two place relations between individuals in a domain 

of 3 elements  

 

 

 

We look at relations satisfying extension, conservatity and quantity. 

 

Let DETM be the set of all relations  in RELM satisfying extension, conservativity and 

quantity 

 

If |DM| = n 

                                                                                           

Then |DETM| = 21+ …+n+1   = 2
(n+1)(n+2)

2  

 

So: 

|DM| = 1 |DETM| = 8 

|DM| = 2 |DETM| = 64 

|DM| = 3 |DETM| = 1024 

 

So of the 264 relations, only 1024 relations are candidates for the denotations of 

natural language determiners. 

 

 

 

 

 

 

 



 66 

DETERMINERS AS PATTERNS ON THE TREE OF NUMBERS 

(van Benthem 1983) 

 

If |CAT| = 3, then there are four possibilities for the cardinalities in 

<|CAT  SMART|, |CAT − SMART |>: 

<0,3> means:   |CAT  SMART | = 0 and |CAT − SMART | = 3 

<1,2>   means:   |CAT  SMART | = 1 and |CAT − SMART | = 2 

<2,1>   means:   |CAT  SMART | = 2 and |CAT − SMART | = 1 

<3,0>   means:   |CAT  SMART | = 3 and |CAT − SMART | = 0 

 

We can write down a tree of numbers which shows for each cardinality of CAT, all 

the possibilities for the cardinalities of <|CAT  SMART |, |CAT − SMART |>: 

 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

We can now study the pattern that each determiner meaning rα makes on the tree of 

numbers, by highlighting (bold italic) the extension of rα: 

 

rEVERY 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

<0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

<0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>   |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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rSOME 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...    

 

rNO 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2> <1,1>  <2,0>     |CAT|=2 

                                   <0,3> <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5> <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8> <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

rAT LEAST 4 

 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                      <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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rAT MOST 4 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1> <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

rEXACTLY 4 

                                                   <0,0>     |CAT|=0 

                                             <0,1>  <1,0>     |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                            <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1> <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2> <5,1>  <6,0>   |CAT|=6 

          <0,7>  <1,6>  <2,5>  <3,4>  <4,3> <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4> <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5> <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

rMOST 

                                                    <0,0>     |CAT|=0 

                                              <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

          <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

     <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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Aristotle’s square of opppositions 

 

 

some ∃       all ∀ 
 
          contrary 
 
contradictory      contradictory 
 
                 contrary 
 
no ¬∃           not all ¬∀ 
 
 
 
some          all  
                   <0,0>             <0,0> 

             <0,1>  <1,0>                   <0,1>  <1,0>   

      <0,2>  <1,1>  <2,0>           <0,2>  <1,1>  <2,0>  

<0,3>  <1,2>  <2,1>  <3,0>     <0,3>  <1,2>  <2,1>  <3,0>  

        

 

 

 

 

                   <0,0>             <0,0> 

             <0,1>  <1,0>                   <0,1>  <1,0>   

      <0,2>  <1,1>  <2,0>           <0,2>  <1,1>  <2,0>  

<0,3>  <1,2>  <2,1>  <3,0>     <0,3>  <1,2>  <2,1>  <3,0>   

no          not all 

       

 

Fact:  some, all, no are lexicalized in languages as determiners (not necessarily in all) 

not all is not lexicalized in any language as a determiner. 

 

However, even though no is lexicalized, there is evidence that the ¬ and the ∃ part are 

semantically separable. 

 

Dutch (From Landman 2004): 

 

(1) Wil   jij een broodstok?  Hm. Dat  heet      helemaal  geen broodstok,  
      Want  you a     breadstick?     Hm.   That is called   completely  [DP no  breadstick] 

dat heet    soepstengel 
that is called soupstel 

 Do you want a breadstick?  Hm. That isn’t called bread stick at all, 

 that is called soup stem. 

 

The negation takes auxiliaty scope, the DP semantically breaks up into  

negation + broodstock 
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Same in English, though determiner negation is a somewhat formal register. 

 

(2) Seek no evil   

      Don’t seek evil 

Evil stays in the scope of the intensional context, but the negation takes auxiliary 

scope. 

 

Conclusion:  even though there is a lexical item no and not a lexical item not all, the 

two parts of the lexical item ¬ + ∃ are semantically separable like the two parts in  

¬ + ∀. 
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SYMMETRY 

 Determiner α is symmetric iff for every model M and all sets X,Y  DM: 

 <X,Y>  FM(α)  iff <Y,X>  FM(α) 

 

Pattern:  α[CATS, SMART] is equivalent to α[SMART, CATS] 

 

   α cat is smart iff α smart cookie is a cat 

   α cats are smart iff α smart cookies are cats 

 

  SYMMETRIC 

every  NO Every cat is smart iff every smart cookie is a cat 

some  YES Some cat is smart iff some smart cookie is a cat  

no  YES No cat is smart iff no smart cookie is a cat 

at least n YES At least three cats are smart iff at least three smart cookies are cats 

at most n YES At most three cats are smart iff at most three smart cookies are cats 

exactly n YES Exactly three cats are smart iff exactly three smart cookies are cats 

many  YES Many cats are smart iff many smart cookies are cats  

(on the analysis given, keeping m constant) 

few  YES Few cats are smart iff few smart cookies are cats 

   (on the analysis given, keeping f constant) 

most  NO Most cats are smart iff most smart cookies are cats 

the cat  NO The cat is smart iff the smart cookie is a cat 

the n cats NO The two cats are smart iff the smart cookies are two cats 

both  NO Both cats are smart iff both smart cookies are cats 

neither  NO Neither cat is smart iff neither smart cookie is a cat 

 

Felicity in there-insertion contexts (Milsark 1974), definiteness effects: 

 

(1)  a. #There is every cat in the garden. 

 b.  There is some cat in the garden. 

 c.  There is no cat in the garden. 

 d.  There are at least three cats in the garden. 

 e.   There are at most three cats in the garden. 

 f.   There are exactly three cats in the garden. 

 g.   There are many cats in the garden. 

 h.   There are few cats in the garden. 

 i.   #There are most cats in the garden. 

 j.   #There is the cat in the garden. 

            k.  #There are the cats in the garden. 

 l.   #There are the three cats in the garden. 

 m. #There are both cats in the garden. 

 n.  #There is neither cat in the garden. 
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There are some zoologists who don't know what a platypus is. 

There are not many zoologists who don't know what a platypus is.  

There are no australian zoologists who don't know what a platypus is. 

#There are all islandic zoologists who don't know what a platypus is. 

#There are most czech zoologists who don't know what a platypus is. 

 

The same pattern with relational nouns like sister in existential have sentences: 

 

 John has D sister(s) in the army. 

 

 John has a sister in the army/ #John has the sister in the army.  

 John has at least two sisters in the army?#John has most sisters in the army 

 

Note: exceptions:   

 (1) a.  Who should we ask to sing Auld lang Syne at the party.  

           Well, there’s always Fred. 

      b. What is there in the fridge?  Well, there’s the milk and the wine and the  

           cheese. 

                   c. There’s every reason to distrust him 

(= there is good reason to distrust him. (1c) does not mean: 

For every reason to distrust him, there is it.)        

 

Milsark:   

[DP [D α] NOUN] is felicitous in there-insertion contexts iff  

α is an indefinite determiner 

 

But Milsark doesn't define what an indefinite determiner is. 

 

Observation:  Keenan 1987, varying Barwise and Cooper 1981: 

(Keenan's actual statement is a bit more subtle, since it applies also to complex noun 

phrases.) 

 

[DP [D α] NOUN] is felicitous in there-insertion contexts iff α is symmetric. 

So Milsark’s notion of α is indefinite is defined as: α is symmetric 
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Determiner α  is an ECQ determiner iff α satisfies extension, conservativity and 

quantity. 

 

Let α be an ECQ determiner. 

 

Given conservativity, the semantics of α[X,Y] where α is a symmetric determiner 

only depends on X∩Y not on X ―Y.  The reason is that ∩ is commutative,  

X∩Y = Y∩X, but ― is not.   

 

If α is an ECQ determiner, its semantics depends on X∩Y, or X―Y or on both.   

If the semantics of α only depends on X∩Y α is symmetric  

This follows from commutativity: 

  

α[X, Y] ⇔ φα(|X∩Y|) ⇔ φα(|Y∩X|) ⇔ α[Y, X].  
(with φα some numerical property not formulated in terms of X and Y)  

 

In the other two cases there is no such equivalence, because of the non-commutative 

nature of ―, hence you cannot prove symmetry. 

 

This is a relatively informal proof.  But it is not difficult to show this more formally. 

 

Let us for ease write α[X, Y] for <X,Y> ∈ FM(α). 

 

We defined: 

 

α is symmetric iff  

for all models M, for all X, Y ⊆ DM: <X,Y> ∈ FM(α) ⇔  <Y,X> ∈ FM(α) 

 

Keenan 1987 gives another definition of symmetry (but the notion may already be in 

van Benthem’s work): 

 

α is symmetric iff 

 for all models M, for all X, Y ⊆ DM: <X,Y> ∈ FM(α) ⇔ <X∩Y,DM> ∈ FM(α) 

 

It will be visually easier to suppress the quantifiers and write this in the object 

language form: 

 

The first definition, then, is written as: 

 

Definition 1: α is symmetric iff  α[A, B] ⇔ α[B, A] 

 

And the second definition is written as: 

 

Definition 2: α is symmetric iff  α[A, B] ⇔ α[A∩B, EXIST] 

 

where EXIST is the existence predicate with:  ⟦EXIST⟧M,g  = DM 
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Theorem:  If α is an ECQ determiner then definition 1 and definition 2 are equivalent.   

       (it is really conservativity that matters) 

 

Proof.   

 

1. The easy side.   

Assume that α is symmetric on definition 2. 

Then we get the following equivalences: 

 

α[A, B] ⇔[definition 2] α[A∩B,EXIST] ⇔[commutativity]  

         α[B∩A,EXIST] ⇔[definition 2] α[B, A]   

   

Hence α is symmetric on definition 1. 

 

2. The harder side (which uses conservativity) 

Assume that α is an ECQ determiner and that α is symmetric on definition 1. 

Then:   

 

α[A, B]  ⇔[conservativity] α[A, A∩B] ⇔[symmetry def 1] α[A∩B, A]  

                                                        ⇔[conservativity] α[A∩B, (A∩B)∩A] 

                               ⇔ α[A∩B, A∩B]  
 

α[A∩B, A∩B] ⇔[determiner schema] rα (|(A∩B) ∩ (A∩B)|, |(A∩B) ― (A∩B)|)  

                        ⇔  rα (|A∩B|,0)   

                    ⇔ rα(|(A ∩ B) ∩ EXIST|, |(A ∩ B) ― EXIST|) 

 

This is because (A ∩ B) ∩ EXIST = (A ∩ B)  
                    and (A ∩ B) ― EXIST = Ø 

 

But: 

 

rα(|(A ∩ B) ∩ EXIST|, |(A ∩ B) ― EXIST|)  ⇔ α[A∩B, EXIST] 

 

We have only used equivalences, so we have derived: 

 

α[A, B] ⇔ α[A∩B, EXIST] 

 

Hence α is symmetric on definition 2. 

QED 

 

With this we can indeed freely use the second definition of symmetry for natural 

language determiners: 

 

α is symmetric iff   α[A, B] ⇔ α[AB, EXIST] 

 

And this indeed means that the truth conditions of α[A, B] only  depend on the 

cardinality of AB, ie. are completely determined by that. 
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We don’t use Milsark’s notion of indefineness, rather the terms used in the GQ 

literature are weak and strong: 

 

 Strenght: 

A determiner α is weak iff α is symmetric; otherwise α is strong. 

 

Generalization:  Weak determiners are determiners α for which the truth value 

                             of α[A, B] only depends on |A  B|.   

 

It is then the commutativity of  (i.e. the fact that A  B = B  A), which brings in 

symmetry. 

For strong determiners, the semantics of α[A,B] depends not on |A  B| or on more 

than |A  B|.   

 

Thus, the semantics of EVERY and MOST depends on |A – B|, which makes the 

determiner antisymmetric (⊆ for every) or asymmetric (> for most). 

 

The semantics of presuppositional noun phrases like the, both, neither have 

presuppositions that interfere with symmetry:  the semantics of α[A, B] associates a 

presupposition with A, that of α[B, A] associates a presupposition with B.  Obviously, 

this is a failure of symmetry.  
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The Adjectival Theory of Numericals 

 

Intersective adjectives 

ADJ = {OLD, SMART} 

If A ∈ ADJ and P ∈ PRED1
nominal then λx.P(x) ∧ A(x) ∈ PRED1

nominal 

 

Adjectival Theory: Indefinite determiners derive from adjectival interpretations. 

 

(1)  a. The three ferocious tigers 

       b. The ferocious three tigers were sent to Artis, and the meek three tigers were  

           sent to Blijdorp. 

 

Inside NP, three can mingle with adjectives. 

 

Idea:  the three cats =  THE[THREE ∩ CATS] 

          where THREE ∈ ADJ and CATS ∈ PRED1. 

 three cats →  λx.CATS(x) ∧ THREE(x) 

 

The set of pluralities that are cats and that count as three. 

This predicate forms input for the generalized quantifier. 

 

DP 

 

D  NP 

 

the  APnum  NP 

 

 three  cats 

 

On this idea, in three cats are smart we see on the surface the NP three cats which is 

a one place predicate, but we don’t see a determiner: 

 

DP 

 

D  NP 

 

e  APnum  NP 

 

 three  cats 
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There is actually reason to assume that the numerical actually syntactically occurs in 

the DP-layer: 

 

DP 

 

D   NP 

 

APnum,i  D APnum,i  NP 

 

three  e    e                   cats 

 

 

 

But the question is, on either analysis:  what is the interpretation of the empty 

determiner? 

The answer (given in Landman 2000) is more subtle than I will give here, and is 

addressed in detail at the end of Advanced Semantics, when we read my 2000 paper. 

 

But it is generally assumed that we have here a one-place predicate, an NP 

interpretation, and what we need to get is a DP interpretation.   

And the standard assumption is that this is done via a form of existential closure. 

 

For the simple case above, we can assume that existential closure takes place by 

assuming that there is a null determiner [DP e] with determiner interpretation: EC. 

 

As I argue in Landman 2000, defining EC so that it will deal with all cases correctly is 

rather tricky, but when done correctly, it will turn out to be the case, that in the case of 

example (1a) EC = SOME: 

 

(1) a. [[Three cats e] are smart] 

          EC[λx.CATS(x) ∧ THREE(x), SMART] 

          SOME[λx.CATS(x) ∧ THREE(x), SMART] 

 

In this analysis, three is just a conjoined predicate with cats and not a determiner.  

The symmetry of the analysis comes from the interpretation of EC,  

in fact, EC, as given in Landman 2000 is symmetric in all cases.   

 

This means that on that analysis the symmetry actually does not derive from the 

numerical, but from the fact that the numerical is conjoined with the noun and the 

semantics of symmetric EC. 

 

Moral:  GQT is not a God Given Theory that gives results that cannot be changed. 

It is a framework and a tool for comparing and developing semantic analyses. 
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A remark about there-insertion: 

-there is is not an existential quantifier :   

That wouldn’t work for examples like (1): 

 

(1) There is no cat in the garden. 

 

This doesn’t have a reading with an existential quantifier taking scope over no cat. 

(?There is something that is no cat, that isn’t a cat, that ??????) 

 

-there is is not a locative.   

It looks like a locative in English, and in Dutch, but cross-linguistic variation shows 

that this is misleading. 

 

The there-insertion construction is a construction in which the subject does not occur 

in the normal external subject position but in some lower position.   

The definiteness effects are presumably related to the special properties of that lower 

position (at least that is what I argue in my 2004 book Indefinites and the Type of 

Sets). 

Instead what appears in the external subject position is what we call a pleonastic 

element (not a great term, because the element may be null).   

What appears there is open to variation.   

We find the definiteness effects not just with there be but also with unaccusative 

verbs like arrive.  

 

English:  There have just now arrived three girls from Paris. 

Pleonastic: there 

 

Dutch:            Er zijn        net drie meisjes aangekomen uit Parijs. 

            Misschien zijn (er) net drie meisjes aagekomen uit Parijs. 

 

The finite verb (zijn) is in second position. 

Pleonastic: If the subject is first position, then  obligatorily  er [there] 

                   If the subject is not first position, it is third position 

       and either er or – [null]  (i.e. optionally filled with er) 

 

German:            Es sind  - gerade drei Mӓdchen angekommen aus Paris. 

                 Vielleicht sind -  gerade drei Mӓdchen angekommen aus Paris. 

The finite verb (sind) is in second position. 

Pleonastic: If the subject is first position, then  obligatorily  es [it] 

                   If the subject is not first position, it is third position and obligatorily – [null] 

        

French:     Il          sont arrivé trois filles de Paris. 

Pleonastic: Il [he]   are arrived three girls from Paris 

Idiomatic:   Il     y      a     un chat dans le jardin   Pleonastic il 

                   he there  has  a    cat   in     the garden 

         there is          a cat in the garden     
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MONOTONICITY. 

 

Let α be a determiner. 

In α[P, Q] we call P the first argument of α and Q the second argument of α 

 

Terminology: 

α is 1: α is upward monotonic, upward entailing, on its first argument 

α is 1: α is downward monotonic, downward entailing, on its first argument 

α is −1: α is neither upward nor downward monotonic on its first argument 

 

α is 2: α is upward monotonic, upward entailing, on its second argument 

α is 2: α is downward monotonic, downward entailing, on its second argument 

α is −2 α is neither upward nor downward monotonic on its second argument 

 

α is 1 iff for every model M and all sets X1,X2,Y  DM: 

     if <X1,Y>  FM(α) and X1  X2 then <X2,Y>  FM(α) 

 

α is 1 iff for every model M and all sets X1,X2,Y  DM: 

     if <X2,Y>  FM(α) and X1  X2 then <X1,Y>  FM(α) 

 

α is −1 iff α is not 1 and α is not 1 

 

α is 2 iff for every model M and all sets X,Y1,Y2  DM: 

     if <X,Y1>  FM(α) and Y1  Y2 then <X,Y2>  FM(α) 

 

α is 2 iff for every model M and all sets X,Y1,Y2  DM: 

     if <X,Y2>  FM(α) and Y1  Y2 then <X,Y1>  FM(α) 

 

α is −2 iff α is not 2 and α is not 2 

 

 

Diagnostic Tests: 

For every model M for English and g:  ⟦GINGER CAT⟧M,g  ⟦CAT⟧M,g 

For every model M for English and g: ⟦WALK⟧M,g  ⟦MOVE⟧M,g 

 

α is 1 iff α[GINGER CAT, WALK]  α[CAT, WALK] 

α is 1 iff α[CAT, WALK]  α[GINGER CAT, WALK] 

α is 2 iff α[CAT, WALK]  α[CAT, MOVE] 

α is 2 iff α[CAT, MOVE]  α[CAT, WALK] 
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  ARGUMENT 1 ARGUMENT 2 

every      

every ginger cat walks every cat walks 

every cat walks  every ginger cat walks 

 

every cat walks  every cat moves 

every cat moves  every cat walks 

 

some        

some ginger cat walks  some cat walks 

some cat walks  some ginger cat walks 

 

some cat walks  some cat moves 

some cat moves  some cat walks 

 

 

no      

 

at least n     

at most n     

exactly n −   − 

 

most  −    

most ginger cats walk  most cats walk 

most cats walk   most ginger cats walk 

 

most cats walk   most cats move 

most cats move  most cats walk 

 

many       (on the analysis given) 

few       (on the analysis given) 

(we ignore the partial determiners here) 

 

Fact: The the determiner interpretations given earlier have exactly this monotonicity 

behaviour: 

 

Examples:  

 

EVERY 

assume:  EVERY[ CAT, WALK] ↓1 

then:   CAT ⊆ WALK 

then:  GINGER CAT ⊆ WALK   (because GINGER CAT ⊆ CAT) 
hence:  EVERY[ GINGER CAT, WALK] 

 

assume:  EVERY[ CAT, WALK] ↑2 

then:   CAT ⊆ WALK 

then:   CAT ⊆ MOVE    (because WALK ⊆ MOVE)  
hence:  EVERY[CAT, MOVE] 
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AT MOST THREE 

assume:  AT MOST THREE[ CAT, WALK] ↓1 

then:   |CAT ∩ WALK| ≤ 3 

then:   |GINGER CAT ∩ WALK| ≤ 3 because GINGER CAT ⊆ CAT 
hence:  AT MOST THREE[ GINGER CAT, WALK] 

 
assume:  AT MOST THREE[ CAT, MOVE] ↓2 

then:   |CAT ∩ MOVE| ≤ 3 

then:   |CAT ∩ WALK| ≤ 3   because WALK ⊆ MOVE 
hence:  AT MOST THREE[ CAT, WALK] 

 

MOST 

↑2 

Assume: MOST[CAT, WALK] 

Then  |CAT ∩ WALK| > |CAT ― WALK| 

 

But:  |CAT  MOVE|  |CAT  WALK|   because WALK ⊆ MOVE 

|CAT − MOVE|  |CAT − WALK| 

 

Hence:  |CAT ∩ MOVE| > |CAT ― MOVE| 

And hence: MOST[CAT, MOVE] 

 

―1 

Assume there are 5 ginger cats and 12 non-ginger cats 

 

Assume 3 ginger cats walk, and 2 ginger cats don’t walk 

|GINGER CAT ∩ WALK| > |GINGER CAT ― WALK| 

Assume none of the 12 non-ginger cats walk 

|CAT ∩ WALK| < |CAT ― WALK| 

 

Then MOST[GINGER CAT, WALK] is true  

but    MOST[CAT, WALK] is false. 

Hence MOST is not ↑1 

 

Assume all 12 non-ginger cats walk 

|CAT ∩ WALK| > |CAT ― WALK| 

And assume 2 of the 5 ginger cats don’t walk. 

|GINGER CAT ∩ WALK| < |GINGER CAT ― WALK| 

 

Then MOST[CAT, WALK] is true 

but    MOST[GINGER CAT, WALK] is false. 

Hence MOST is not ↓1 

 

Hence MOST is ―1 

 

 

 

 

 

 



 82 

Polarity sensitivity items: any, ever, a red cent, budge an inch, a damn,… 

 

 (1) a.    I don't see anything 

      b. #I see anything. 

 (2) a.    I haven't ever visited him. 

                  b.  #I have ever visited him. 

 (3) a.    I don't give a damn. 

                  b.   #I give a damn. 

 (4) a.   He doesn’t give a red cent to charity. 

                  b.  #He gives a red cent to charity. 

 (5) a.  The donkey didn’t budge an inch. 

                  b.  #The donkey budged an inch. 

 

Polarity sensitivity items are licensed in the scope of negation. 

But not just negation, also other contexts: 

-Questions: Did you ever love me? 

-Antecedents of conditionals:  If Fred reads anything these days, it is Italo Calvino. 

-and more… 

 

We use ever. 

We check:  α student(s) ever visited Paris ever in the second argument of α 

        α student(s) who ever visited Paris was/were happy 

      ever in the first argument of α 

 

(1) a.    #Every student ever visited Paris.    2 

      b.  Every student who ever visited Paris was happy.  1 

 

(2) a.    #Some student ever visited Paris.    2 

      b.   #Some student who ever visited Paris was happy.  1 

 

(3) a.  No student ever visited Paris.    2 

      b. No student who ever visited Paris was happy.  1 

 

(4) a.  #At least three students ever visited Paris.   2 

      b. #At least three students who ever visited Paris were happy. 1 

 

(5) a.  At most three students ever visited Paris.   2 

      b. At most three students who ever visited Paris were happy. 1 

 

(6) a.  #Exactly three students ever visited Paris.   2 

      b. #Exactly three students who ever visited Paris were happy. 1 

 

(7) a. #Most students ever visited Paris.    2 

      b.?Most students who ever visited Paris were happy.  1 

 

(8) a. #Many students ever visited Paris.    2 

      b. #Many students who ever visited Paris were happy.  1 

 

(9) a.  Few students ever visited Paris.    2 

      b  Few students who ever visited Paris were happy.  1 
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Results: ever felicitous inside: 

  ARGUMENT 1 ARGUMENT 2 

every  YES   NO 

some  NO   NO   

no  YES   YES 

at least n NO   NO 

at most n YES   YES 

exactly n NO   NO 

most  NO(?)   NO 

many  NO   NO 

few  YES   YES  

 

Correlation: (Ladusaw 1979) Polarity sensitivity item α is felicitous  iff 

            α occurs in a downward monotonic environment. 

 

Results: ever felicitous inside: 

  ARGUMENT 1 ARGUMENT 2 

every  YES ↓1  NO ↑2 

some  NO ↑1  NO ↑2  

no  YES ↓1  YES ↓2 

at least n NO ↑1  NO ↑2 

at most n YES ↓1  YES ↓2 

exactly n NO ―1  NO ―2 

most  NO(?) ―1  NO ↑2 

many  NO ↑1  NO ↑2 

few  YES ↓1  YES  ↓2 
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What is it about any that makes it occur in DE contexts?  

(Kadmon and Landman 1993) 

 

Intensifiers: 

 John is a fool 

 John is a damn fool 

 

1.  What does damn do?   

Answer:  it creates a stronger expression 

 

2.  What does stronger mean? 

Answer: The expression damn entails the expression without damn  

(Kadmon and Landman allow also pragmatic implication here) 

 

3.  How does it create a stronger meaning?   

Answer:  By being a subsective/intersective adjective 

(a damn fool is a fool, but not every fool is a damn fool) 

i.e. DAMN FOOL ⊆ FOOL  
 

4.  When will it work? 

Answer:  In upward entailing contexts. 

 

Cf.  John isn't a damn fool, he is only a  bit of a fool  (only metalinguistic negation) 

Cf.  a.   I have always told you Jane, your husband is a DAMN fool. 

       b.# I have always told you Jane, your husband isn't a DAMN fool. 

 

A damn fool is an indefinite which is stronger and more restricted than  

            a fool. 

 

5. How do you intensify in downward entailing contexs? 

Answer:  By finding an expression that creates a stronger expression in downward 

entailing contexts. 

Adjectives restrict the noun interpretation:  this is weaker in DE contexts. 

So what we want is an anti-adjective: an expression that doesn't restrict the noun 

interpretation but liberates it, widenes it. 
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6. Polarity sensitivity items are anti-adjectives 

(This is not a standard term, the term is invented for these class notes. But it is a good 

term.) 

 

Out of the blue the noun potatoes is restricted in context. 

I ask: do we have any potatoes?  You say: no, we don’t have potatoes, you turned 

them into latkes. 

 

We don't have potatoes        = We don't have potatoesNARROW 

 potatoesNARROW = potatoes for eating 

 

I say [desparately]:  what about the potatoe we used for the game of Mr. Potato Head 

with the kids yesterday?  You say, no Fred, we don’t have any potatoes. 

 

 We don't have any potatoes = We don't have potatoesWIDE 

 potatoesWIDE = potatoes for eating or for playing games 

 

Any fool is an indefinite which is stronger and less restricted than a fool. 

   

But, of course, anti-adjectives only create a stronger expression in DE contexts. 

 

So the restriction on DE contexts can be explained through the interaction of the two 

properties: widening and strenghtening.  
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ANOTHER CHARACTERIZATION OF 2 AND 2 (van Benthem 1984) 

 

 

Upward monotonicity on the second argument 

 

Monotonicity, again, in simpler notation: 

 

α is 2 iff if α[A, B1] and B1 ⊆ B2 then α[A, B2] 

 

van Benthem 1984 shows that there is an equivalent second definition of 

monotonicity: 2*  

 

α is 2* iff if α[A, B1] and (A  B1)  (A  B2) then α[A, B2] 

 

The condition (A  B1)  (A  B2) stands for the following situation: 

 

 

  (A  B1) 

 

 

(A ― B1) 

 

   

 

  (A  B2) 

 

 

(A ― B2) 

  [This can be seen by noting that: 

1.  For any set B:  (A  B)  (A ― B) = A 

2.  If (A  B1)  (A  B2) then (A ― B2)  (A − B1)] 

 

On this definition of monotonicity,  

α is upward monotonic on the second argument if  

moving objects from the difference to the intersection doesn’t affect the truth value 
 

And van Benthem proves that these two definitions are equivalent (for ECQ 

determiners). 

 

Lemma:   α if 2 iff α is 2* 

Proof:   

(Side 1)   Assume α is 2*. 

         Assume that α[A, B1] and B1  B2.     

  If B1  B2 then (A  B1)  (A  B2).   

  Then, by definition of 2*, α[A, B2]. 

  Hence, indeed, α is 2. 

 

(Side 2) Assume α is 2. 

  Assume that α[A, B1] and (A  B1)  (A  B2). 

  By conservativity:  α[A, B1] iff α[A, AB1] 

    Since (A  B1)  (A  B2), by 2,   α[A, AB2]. 

  By conservativity, α[A, AB2] iff α[A, B2]. 

  Hence α[A, B2] 

  Hence, indeed, α is 2*. 
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So this version of ↑2* says: 

 

Assume that α[CAT, SMART] is true  [situation 1]  

Decide that some non-smart cats are smart after all [situation 2] 

Then α[CAT, SMART] is true in situation 2. 

 

Examples: 

1. If at least three cats are smart, then smartening up non-smart cats doesn’t affect the 

truth value. at least three  is ↑2*. 

2. If at most three cats are smart, then smartening up non-smart cats can easily affect 

the truth value. most three  is not ↑2*. 

 

 

Downward monotonicity on the second argument: 

 

α is 2* iff if α[A, B2] and (A  B1)  (A  B2) then α[A, B1]  

 

On this definition of monotonicity,  

α is downward monotonic on the second argument if  

moving objects from the intersection to the difference doesn’t affect the truth value 
 

So this version of ↓2* says: 

 

Assume that α[CAT, SMART]  is true [situation 1]  

Decide that some smart cats are not smart after all [situation 2] 

Then α[CAT, SMART] is true in situation 2. 

 

Examples: 

1. If at most three cats are smart, then removing smart cats doesn’t affect the truth 

value. at most three  is ↓2*. 

2. If at least three cats are smart, then removing smart cats can easily affect the truth 

value. at least three  is not ↓2*. 

 

 

Lemma:   α if 2 iff α is 2*  Proof:  mirror image of the above proof. 

 

 

−2*  If exactly three cats are smart is true, it doesn't necessarily stay true if you decide 

that some non-smart cats are smart after all, and neither if you decide that some smart 

cats are not smart after all. 
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ANOTHER CHARACTERIZATION OF 1 AND 1 (van Benthem 1984) 

 

Only an informal characterization this time: 

 

α is 1* iff if α[CAT, SMART] is true then α[CAT, SMART] stays true if you add cats.   

α is 1* iff if α[CAT, SMART] is true then α[CAT, SMART] stays true if you take 

away cats. 

 

Here adding cats means: either adding them to the intersection or the difference of 

CAT and SMART or both, and taking away cats means: either taking them away from 

the intersection or from the difference or from both. 

 

 

Example:   

2*  If at least three cats are smart is true, it stays true if you add more cats to the 

domain. 

 

2*  If at most three cats are smart is true, it stays true if you take away some cats 

from the domain. 

 

−2*  If exactly three cats are smart is true, it doesn't necessarily stay true if you add 

cats to the domain, and neither if you take away cats from the domain. 
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MONOTONICITY ON THE TREE OF NUMBERS 

 

Monotonicity on the second argument 

 

These characterisations allow us to define the patterns that monotonicity make on the 

tree of numbers: 

 

2
* if  <n,m>  rα, then every number to the right is in α 

 

 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,3>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

 

2
* if <n,m)  rα then every number to the left is in α 

 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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We see: 

 

rEVERY is 2
*

  

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

<0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

<0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>   |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

 

 

rSOME is 2
*
 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...    

 

 

rNO is 2
*
 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2> <1,1>  <2,0>     |CAT|=2 

                                   <0,3> <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5> <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8> <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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rAT LEAST 4 is 2
* 

 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                      <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

 

rAT MOST 4 is 2
* 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |CAT|=4 

                        <0,5>  <1,4>  <2,3>  <3,2>  <4,1> <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

 

rEXACTLY 4 is neither2
* nor 2

* 

                                                   <0,0>     |CAT|=0 

                                             <0,1>  <1,0>     |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                            <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1> <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2> <5,1>  <6,0>   |CAT|=6 

          <0,7>  <1,6>  <2,5>  <3,4>  <4,3> <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4> <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5> <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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rMOST is 2
* 

                                                    <0,0>     |CAT|=0 

                                              <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

          <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

     <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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Monotonicity on the first argument 

 

 

We can give similar definitions on the tree for 1 and 1
 

I will here state the facts about the trees: 

 

rα is 1 iff if <n,m>  rα then <n+1,m>, <n,m+1>  rα 

 

This means that rα is 1 iff if <n,m>  rα 

then the whole triangle with top <n,m> is in rα. 

Adding a new object to A∪B doesn’t affect the truth conditions 

 

Example:  rAT MOST 4 is 1: 

 

rAT LEAST 4 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                      <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

rα is 1 iff if <n,m>  rα then <n−1,m>, <n,m−1>  rα  

(when n or m is 0, set n−1, m−1 to 0 as well) 

 

This means that rα is 1 iff if <n,m>  rα then the whole inverted triangle with 

bottom <n,m> is in rα.   

Taking away objects from A∪B doesn’t affect the truth conditions. 

 

Example: rAT LEAST 4 is 1: 

 

rAT MOST 4 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1> <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1> <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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It is easy to check that rEXACTLY 4 is none of the above:  

 

rEXACTLY 4 

                                                   <0,0>     |CAT|=0 

                                             <0,1>  <1,0>     |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                            <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1> <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2> <5,1>  <6,0>   |CAT|=6 

          <0,7>  <1,6>  <2,5>  <3,4>  <4,3> <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4> <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5> <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

 

revery is clearly not 1, since the downward triangles are not preserved. 

revery is 1, since the upward inverted triangle is just the right edge. 

 

rEVERY 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

<0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

<0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>   |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

 

rno is again clearly not 1, but it is 1, because, again, the upward inverted triangle is 

just the left edge.  

 

rNO 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2> <1,1>  <2,0>     |CAT|=2 

                                   <0,3> <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5> <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8> <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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rmost is 2, but neither 1 nor 1: for no point in rmost is the downward triangle 

completely in rmost and for no point is the upward triangle completely in rmost  (because 

<0,0> is not). 

 

rMOST 

                                                    <0,0>     |CAT|=0 

                                              <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

          <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

     <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 
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SYMMETRY ON THE TREE OF NUMBERS 

 

We have shown that for symmetric determiners the truth value of α[A, B] only 

depends on A∩B not on the difference. This means in terms of the numbers <n,m>, 

that the truthvalue only depends on n, not on m. 

 

We assume that: 

 

α is symmetric iff rα is symmetric 

 

What does it mean for rα to be symmetric? 
It means that the number m varies without affecting the truthvalue of α[A, B] 

This means that: 

 

rα is symmetric iff 

If for some number n ∈ ℕ there is a number k ∈ ℕ such that <n,k> ∈ rα  
then for all numbers m ∈ ℕ: <n,m> ∈ rα  

If for some number n ∈ ℕ there is a number k ∈ ℕ such that <n,k> ∉ rα  
then for all numbers m ∈ ℕ: <n,m> ∉ rα 

 
In terms of the tree of numbers this means the following. 

For number n, {<n,k>:k  ℕ} is a diagonal line in the tree going from left below to 

right up: 

Like, for n = 3: 

 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

rα is symmetric iff every such diagonal line is either completely inside rα or 

completely outside rα. 

 

With this we can check straighforwardly in the trees which rα's are symmetric: 
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revery is not symmetric: 

 

rEVERY 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                   <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

<0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

<0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>   |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

rsome is symmetric: 

 

rSOME 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2>  <1,1>  <2,0>     |CAT|=2 

                                  <0,3>  <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5>  <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8>  <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...    

 

rno is symmetric: 

 

rNO 

                                                    <0,0>     |CAT|=0 

                                               <0,1>  <1,0>      |CAT|=1 

                                         <0,2> <1,1>  <2,0>     |CAT|=2 

                                   <0,3> <1,2>  <2,1>  <3,0>     |CAT|=3 

                             <0,4>  <1,3>  <2,2>  <3,1>  <4,0>    |CAT|=4 

                       <0,5> <1,4>  <2,3>  <3,2>  <4,1>  <5,0>    |CAT|=5 

                 <0,6>  <1,5>  <2,4>  <3,3>  <4,2>  <5,1>  <6,0>   |CAT|=6 

           <0,7>  <1,6>  <2,5>  <3,4>  <4,3>  <5,2>  <6,1>  <7,0>   |CAT|=7 

      <0,8> <1,7>  <2,6>  <3,5>  <4,4>  <5,3>  <6,2>  <7,1>  <8,0>  |CAT|=8 

<0,9>  <1,8>  <2,7>  <3,6>  <4,5>  <5,4>  <6,3>  <7,2>  <8,1>  <9,0>  |CAT|=9 

...          ... 

 

It is easy to check that rAT LEAST n, rAT MOST n, rEXACTLY n are symmetric,  

but that rmost is not symmetric. 
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SEMANTIC AUTOMATA, JUST A TASTE  (again van Benthem) 

 

CAT  CAT  CALICO CAT ¡ CALICO 

 

(A calico cat is three coloured: typically black, red, and white) 

 

Give every individual in CAT a collar with the letter i (for intersection) or d (for 

difference): 

 

 ronya has label i because ronya  CAT  CALICO 

 pim    has label d because pim  CAT ¡ CALICO 

 

In going through the set of cats, we can write a sequence: 

 

 i i i d i d i i   

 

 a string of labels indicating that |CAT  CALICO| = 6 and  

         |CAT − CALICO| = 2 

 

 

the set of strings  in alphabet {i, d} such that d doesn’t occur in  

 {e, i, ii, iii, iiii,….} (e is the empty string) 

 

The some language is  

the set of strings  in alphabet {i, d} such that i does occur in  

 {i, id, di, idd, did, ddi, iid, idi, dii,iid,…} 

 

The most language is the set of strings with more d’s and i’s. 

 ddiiidiii is in the most language,  ddddddiid is not. 

etc. 

 

The every automaton (smiley’s are accepting states): 

 

                                   i 

                                                                                          i 

        Accepted:  iiiiii 

                                  d     Rejected:    iiiidi 

        (one cat isn't three coloured) 

 

 

                                                                              d 
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The some automaton: 

 

 

                                  d 

                                                                                          d 

        Accepted:  ddddid  

                                   i     Rejected:    dddd 

 

 

                                                                               i 

 

 

Fact:   For every determiner definable in predicate logic, there is a finite state  

            automaton accepting its language (regular) 

           -Some ‘determiners’ that are not definable in predicate logic have a language  

             accepted by a finite state automaton (an even number of) 

           - the most  language is not accepted by a finite state automaton. 

             the most language is accepted by a pushdown storage automaton (context  

             free). 

 

Push down storage automaton:  while reading you can push symbols onto a memory 

store or pop symbols from the store, where the store is a first-in last-out memory. 

 

The most automaton: 

Start:  You start reading the first symbol of the string and an empty store. 

Move: 1. If the top of the store is empty, push what you read on the input on top of  

     the store.  

 2. If what you read on the input is the same as what is on top of the store,  

                then push what you read on the input on the top of the store.    

3. If the store is not empty and what you read on the input is different from  

     what is on top of the store, then pop the topsymbol off the store. 

 4. In each case move to reading the next right symbol on the input tape. 

End:  When you reach the end symbol # on the input tape stop and accept the string if  

            there are i’s in the store, otherwise reject the string. 
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Example.  We read the string: idiiddiddii 

 

We start: 

# i  d  i  i  d  d  i  d  d  i  i  # 

    
  

  
 
You read i on the input tape, nothing in the store. 

 

Read the next symbol on the input tape and add the i that you read on the input to the 

top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

    
   

   
  i 
 

You read d on the input tape and i on the store. They are different. So:  

 

Read the next symbol on the input tape and remove the i from the top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

    
    

    
   
You read i on the input tape, nothing in the store. 

 

Read the next symbol on the input tape and add the i that you read on the input to the 

top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

    
     

     
    i 
 

You read i on the input tape, and i on the top of the store. They are the same. 

 

Read the next symbol on the input tape and add the i that you read on the input to the 

top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

    
      

      
     i 

     i 

 

You read d on the input tape and i on the store. They are different. So:  
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Read the next symbol on the input tape and remove the i from the top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

    
       

       
      i 
      

 

You read d on the input tape and i on the store. They are different. So:  

 

Read the next symbol on the input tape and remove the i from the top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 
        

        
       
You read i on the input tape, nothing in the store. 

 

Read the next symbol on the input tape and add the i that you read on the input to the 

top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

       
         

         
        i 
 
You read d on the input tape and i on the store. They are different. So:  

 

Read the next symbol on the input tape and remove the i from the top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

      
           

          
          
You read d on the input tape, nothing in the store. 

 

Read the next symbol on the input tape and add the d that you read on the input to the 

top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

       
           

           
          d 

 

You read i on the input tape and d on the store. They are different. So:  
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Read the next symbol on the input tape and remove the d from the top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

       
           
            
            

You read i on the input tape, nothing in the store. 

 

Read the next symbol on the input tape and add the i that you read on the input to the 

top of the store: 

# i  d  i  i  d  d  i  d  d  i  i  # 

        
            
             
            i 
You read end symbol # on the input tape, i on top of the store. 

 

You stop and you accept the string, since there are i’s in the store. 

This means that the automaton accepts the string idiiddiddii. 

 

This means that it represents a situation in which MOST[CAT, CALICO] is true, 

which is good, since there are 6 CATS that are calico and 5 cats that are not. 

 

 


