
 1

XIII. NUMERICALS AND THE DEFINITE ARTICLE

Expressing numericals in predicate logic.

We are interested here in expressive capacity:

property P can be expressed in predicate logic iff there is a predicate logical formula φ

such that for every predicate logical model M: P holds in M iff ⟦φ⟧M = 1.

So we are not concerned here with interpreting compositionally a natural language

expression like, say, more than seven but less than twelve cats are smart, but only

with the question whether the truth conditions of that sentence can be expressed at all

with some formula of predicate logic. We will see that the answer is yes for this

example, but no for other examples, like most cats are smart.

(1) At least one cat is smart.

(2) At least two cats are smart.

(3) At least three cats are smart.

(4) At most one cat is smart.

(5) At most two cats are smart.

 2

(6) At most three cats are smart.

(7) Exactly n cats are smart = ?

 3

Expressing numericals in predicate logic

(1) At least one cat is smart.

 x[CAT(x)  SMART(x)]

(2) At least two cats are smart.

xy[CAT(x)  SMART(x)  CAT(y)  SMART(y)  (x=y)]

(3) At least three cats are smart.

xyz[CAT(x)  SMART(x)  CAT(y)  SMART(y)  CAT(z)  SMART(z)

(x=y)  (x=z)  (y=z)]

(4) At most one cat is smart.

xy[CAT(x)  SMART(x)  CAT(y)  SMART(y) → (x=y)]

(5) At most two cats are smart.

xyz[CAT(x)  SMART(x)  CAT(y)  SMART(y)  CAT(z)  SMART(z) →

 [(x=y)  (x=z)  (y=z)]]

(6) At most three cats are smart.

xyzu[CAT(x)  SMART(x)  CAT(y)  SMART(y)  CAT(z)  SMART(z)

  CAT(u)  SMART(u) → [(x=y)  (x=z)  (x=u)  (y=z)  (y=u)  (z=u)]]

(7) Exactly n cats are smart = at least n cats are smart  at most n cats are smart.

 4

Russell:

(7) The cat is smart.

x[CAT(x)  y[CAT(y) → (x=y)]  SMART(x)]

There is one and only one cat and that cat is smart.

Problem:

(8) The cat isn’t smart

Russell:

¬x[CAT(x)  y[CAT(y) → (x=y)]  SMART(x)]

∀x[CAT(x) ∧ y[CAT(y) → (x=y)] → ¬SMART(x)]

If there is one and only one cat, that cat isn’t smart

But (8) also implies that there is a cat, and the negation of Russell’s formula doesn’t.

Frege,Strawson: The existence and uniqueness are not asserted but presupposed.

Add to L3:

 If P  PRED1, then σ(P)  TERM

Semantics:

 d if ⟦P⟧M,g = {d}

 ⟦σ(P)⟧M,g =

 ⊥ otherwise

⊥ stands for undefined

If there is an individual d ∈ DM such that d is the one and only object in DM that has P
(rel g), i.e. ⟦P⟧M,g ={d}, then σ(P) denotes d in M (rel g), ⟦σ(P)⟧M,g = d.

If for no d ∈ DM ⟦P⟧M,g ={d}, the σ(P) is undefined in M rel. g.

This is the case when ⟦P⟧M,g = Ø (existence failure),
 or if |⟦P⟧M,g| > 1 (uniqueness failure)

This requires a three valued semantics which allows the truth value of expression to

be undefined. Example:

(8) The cat is smart.

SMART(σ(CAT))

 1 if ⟦σ(CAT)⟧M,g  FM(SMART)

⟦SMART(σ(CAT)⟧M,g = 0 if ⟦σ(CAT)⟧M,g  DM − FM(SMART)

 ⊥ otherwise

(8) is undefined if there is no cat, and also if there is more than one cat.

 5

The use of an expression to talk about a situation M presupposes that it is defined in

M. Hence the use of (8) to talk about M, presupposes that FM(CAT) is a set with

exactly one element, a singleton set.

Existence failure: #Though I don’t have a cat, the cat I have is white.

Uniqueness failure: #

Other example: You walk through an alley. There are two cats sitting on a garbage can.

 You say: The cat is white. # infelicitous.

Similar modifications are needed for sentences involving n-place relations and

identity statements.

Also the connectives need to be modified.

Three valued negation:

 0 → 1

 1 → 0

 ⊥ → ⊥

Now it follows that both WHITE((CAT)) and WHITE((CAT)) presuppose that

there is a unique cat (in the context).

 6

presuppositions of speech acts (Stalnaker): assertion, denial, questioning, supposition.

Assertion: Your cat is white.

Denial: Your cat isn’t white

Questioning: Is your cat white?

Supposition: If your cat is white, the this is not your cat.

But cf: If he has a cat, his cat is young

 (presupposition satisfied inside the sentence)

Further modifications of the semantics: strong Kleene three values semantics for

connectives and quantifiers.

Strong Kleene three valued truth tables:

 φ 1 0 ⊥ φ 1 0 ⊥

ψ ψ

1 1 0 ⊥ 1 1 1 1

0 0 0 0 0 1 0 ⊥

⊥ ⊥ 0 ⊥ ⊥ 1 ⊥ ⊥

Generalization to quantifiers:

 1 iff for every d  DM: ⟦φ⟧M,gx

d = 1

⟦xφ⟧M,g = 0 iff for some d  DM: ⟦φ⟧M,gx
d = 0

 ⊥ otherwise

 1 iff for some d  DM: ⟦φ⟧M,gx
d = 1

⟦xφ⟧M,g = 0 iff for every d  DM: ⟦φ⟧M,gx
d = 0

 ⊥ otherwise

These clauses generalize the clauses for  and .

 7

Metalinguistics negation

What about the following counterexample:

(1) A letter to the Times:

Sir. In contradiction to what was written in the Times yesterday, the president

of Belgium was not sent to prison, because, as you ought to know, Belgium is

a monarchy.

No contradiction.

Metalinguistic negation. (Horn 1985)

 In Dutch –n after schwa is not pronounced, except in Groningen, despite what the

 crazy new spelling reform rules try to make you believe.

 You are ordering pancakes in an Amsterdam pancake restaurant, and you read your

 order aloud from the menu (in new spelling) to the waiter. The waiter says to

 you with a sneer:

(2) Sir, we do not have “pannenkoek” on the menu, we only have “pannekoek” on the

 menu (we are in Amsterdam here).

This doesn’t mean: it is not true that we have pancakes on the menu, the waiter

accepts that there are pancakes on the menu, but objects to some other aspect of the

utterence, like:

-a presupposition (1)

-the pronunciation (2)

-the register (3)

(3) Larry Horn’s example:

 No Johnny, Phideau didn’t shit on the rug. he defecated on the carpet.

These cases are instances of metalinguistic negation (Horn):

Metalinguistic negation: Use negation to object to some aspect of the utterance other

 than truth value.

Like pronounciation, register, or indeed: presupposition.

Presupposition

Assertion, denial, questioning, supposition of φ presuposes p.

The above cases are counterexamples.

But this is not the standard use of negation.

 8

Stalnaker: we only expect presuppositions for an utterence, if that utterence is

intended as an assertion.

Example with conditionals:

Conditional assertion:

If the president opened partiament yesterday, then today is Wednesday.

Presupposition: there is a president.

Meta reasoning about what the antecendent presupposes (not conditional assertion)”

 If, as you say, the president opened partiament yesterday, then that means that

 there is a president.

No presupposition that there is a president for the whole sentence.

 9

WHY MOST IS NOT FIRST ORDER DEFINABLE

 CAT ∩ SMART CAT ― SMART

Let  = Every Cat is Smart

For this example we ignore the irrelevant set DM ― CAT.
We start with CAT = Ø, so CAT ∩ SMART = Ø and CAT ― SMART = Ø

D = Ø

CAT ∩ SMART CAT ― SMART

 φ = every cat is smart

φ is true

Now we add an object d1: CAT = {d1}.

I can put d1 in CAT ∩ SMART or in CAT ― SMART
CAT ∩ SMART CAT ― SMART CAT ∩ SMART CAT ― SMART

 d1 d1

situation 1a: φ is true situation 1b: φ is false

Now we add a second object d2: CAT = {d1, d2}

The options that we have are:

Starting in situation 1a or in 1b we can put d2 in the intersection or the difference

CAT ∩ SMART CAT ― SMART CAT ∩ SMART CAT ― SMART

 d1, d2 d2 d1

situation (1a)a φ = true Situation (1b)a φ is false

 10

CAT ∩ SMART CAT ― SMART CAT ∩ SMART CAT ― SMART

 d1 d2 d1, d2

situation (1a)b φ is false situation (1b)b φ is false

What we see is this: φ starts out as true when CAT = Ø.

As long as we put new objects in CAT ∩ SMART, φ stays true.

We can make the truthvalue flip by putting a new object in CAT ― SMART, φ

becomes false.

Once we have put an object in CAT ― SMART, new objects will not affect the truth

conditions any more: once false, φ stays false when adding objects.

We see:

the truth value of φ can flip in the process of adding object to the domain at most

once, from true to false.

 If every cat is smart is true on domain D, it can become false by adding a cat, but as

soon as it is false on a domain, no matter how many individuals I add to the domain,

every cat is smart stays false (i.e. one non-smart cat is enough).

The same holds for a sentence like ψ = Some cat is smart for inverse reasons:

D = Ø

CAT ∩ SMART CAT ― SMART

 ψ = some cat is smart

ψ is false

Now we add an object d1: CAT = {d1}.

I can put d1 in CAT ∩ SMART or in CAT ― SMART
CAT ∩ SMART CAT ― SMART CAT ∩ SMART CAT ― SMART

 d1 d1

situation 1a: ψ is true situation 1b: ψ is false

Now we add a second object d2: CAT = {d1, d2}

The options that we have are:

 11

Starting in situation 1a or in 1b we can put d2 in the intersection or the difference

CAT ∩ SMART CAT ― SMART CAT ∩ SMART CAT ― SMART

 d1, d2 d2 d1

situation (1a)a ψ = true Situation (1b)a ψ is true

CAT ∩ SMART CAT ― SMART CAT ∩ SMART CAT ― SMART

 d1 d2 d1, d1

situation (1a)b ψ is true situation (1b)b ψ is false

What we see is this: ψ starts out as false when CAT = Ø.

As long as we put new objects in CAT ― SMART, φ stays false.

We can make the truthvalue flip by putting a new object in CAT ∩ SMART, ψ

becomes true.

Once we have put an object in CAT ∩ SMART, new objects will not affect the truth

conditions any more: once true, φ stays true when adding objects.

We see:

the truth value of ψ can flip in the process of adding object to the domain at most

once, from false to true.

 If some cat is smart is false on domain D, it can become true by adding a cat, but as

soon as it is true on a domain, no matter how many individuals I add to the domain,

some cat is smart stays true (i.e. one smart cat is enough).

Other sentences can flip more than once.

Take Exactly three cats are smart.

On a domain of less that three individuals,, the sentence is false.

I can make it true once I have three individuals (flip one): put d1 in CAT ∩ SMART,

then put d2 in CAT ∩ SMART, Exactly three cats are smart is still false.

Now put d3 in CAT ∩ SMART, and Exactly three cats are smart becomes true.

We can postpone making it flip from false to true by adding as many objects as you

want to CAT ― SMART, but as soon as you add one more to CAT ∩ SMART,

Exactly three cats are smart becomes true.

After that, I can keep it true by adding objects only to CAT ― SMART.

But I can make it false again, by adding one more object to CAT ∩ SMART: flip two.

But that’s is, once I have added a fourth object to CAT ∩ SMART, the sentence will

stay false what everymore you do.

A sentence like exactly 3 cats or exactly 10 cats are smart can flip four times.

 12

This leads to the question:

For an arbitrary predicate logical sentence, how many times can it flip?

The answer is given in a theorem:

Theorem: Every predicate logical sentence can flip maximally a finite number of

 times, meaning: for each predicate logical sentence  there is a boundary

 number n, which is the number of times that  can flip (this number can

 actually be computed for each sentence)

Barwise and Cooper 1980 Linguistics and Philosophy

Now look at  = Most cats are smart.

The truth conditions say: |CAT  SMART| > |CAT ¡ SMART|

We start out with a domain on which  is true.

-Add non-smart cats to make the numbers equal:  flips:  is false.

-Add a smart cat:  flips:  is true

-Add a non-smart cat:  flips:  is false.

-Add a smart cat:  flips:  is true

etc…

Hence, for  = most cats are smart the truth value of  can continue to flip:

there is no number n where n is the maximal number of flips that  makes.

This means, by the theorem, that there is no predicate logical formula which is

equivalent to Most cats are smart, because for all predicate logical formulas there is

such a number.

This means that most is not first order definable.

The proof of the above theorem is nasty, it involves keeping track of quantifier depth,

quantifiers embedded into other quantifiers.

 13

(1) a. Finitely many angels stand on the tip of a pin.

 b. Infinitely many angels stand on the tip of a pin

The following theorem is a straighforward consequence of the basic completeness

theorem for predicate logic, the theorem that says that every valid inference can be

derived in the proof theory of predicate logic.

If  is a set of sentences we say that M is a model for  if all the sentences in  are

true on M.

We say that that a model M has cardinality n iff |DM| = n

Thus, a finite model is a model with a finite domain.

Theorem: If a set of sentences has arbitrarily large finite models, it has an infinite

 model.

We use this theorem to prove that, while we can express all sorts of cardinality

statements in predicate logic, we cannot express that the domain is finite or that the

domain is infinite.

We look at the following three sentences:

(a) x[Angel(x)]

(b) x[Angel(x) → Stand-on-this-pin(x)]

(c) Only finitely many angels stand on this pin.

Our set of sentences is  = {a,b,c}

Hence in any model for  there are only angels (by a), and they all stand on this pin

by (b).

Obviously, if I take a domain with one object, specify that it is an angel and that it is

standing on this pin, I have a model for , because it is also true that only finitely

many angels stand on this pin in this model, namely one.

Now, obviously, I can do this for any finite domain: if I interpret all the objects as

angels standing on this pin, I have a model for .

This means that  has arbitrarily large finite models.

By the theorem, it means that if (c) is definable in predicate logic, then  has an

infinite model Minf,whose domain is the infinite set Dinf.

Since this model is a model for , everything in it is an angel standing on this pin and

since Dinf is infinite, infinitely many angels stand on this pin.

But that means that it is false that only finitely many angels stand on this pin, so Minf

isn’t a model for  after all. This can only be, if there is no predicate logical sentence

defining (c), and that means that the notions finiteness/infinite are not definable.

So the determiners finitely many and infinitely many are not definiable.

All cats but at most 12 are smart

 14

XIV. ORDER RELATIONS

Let R be a two-place relation.

R is reflexive: x[R(x,x)] resemble, be as old as

 a b

 c d

R is irreflexive: x[R(x,x)] precede, sit next to, be younger than

 a b

 c d

R is non-reflexive: ∃x[¬R(x,x)] love

R is not irreflexive: ∃x[R(x,x)]

 a b

 c d

R is transitive: xyz[R(x,y)  R(y,z) → R(x,z)] precede, be taller than

 be part of

 a b

 c d

R is intransitive: xyz[R(x,y)  R(y,z) → R(x,z)] be one year older than

 a b

 c d

 15

R is non-transitive: ∃x∃y∃x[R(x,y) ∧ R(y,z) ∧ ¬ R(x,z) love, fit in, resemble,

 is a neighbour of

 a b

 c d

R is symmetric: xy[R(x,y) → R(y,x)] resemble, is a neighbour of

 sit next to (between people)

 stand next to (houses)

 a b is equally old as

 c d

R is asymmetric: xy[R(x,y) → R(y,x)] is younger than

 a b

 c d

R is antisymmetric: xy[R(x,y)  R(y,x) → (x=y)] is part of

 a b

 c d

R is non-symmetric: ∃x∃y[R(x,y) ∧ ¬R(y,z)] love

 sit next to (unlike categories)

 I sit next to an empty chair

 a b The house stands next to

 the lake.

 c d

 16

R is connected: xy[R(x,y)  R(y,x)]

 a b

 c d

R is s-connected: xy[R(x,y)  R(y,x)  (x=y)]

 a b

 c d

R is a pre-order: R is reflexive and transitive

R is a partial order: R is reflexive and transitive and antisymmetric.

R is a strict partial order: R is irreflexive and transitive and asymmetric.

R is a total or linear order: R is a connected partial order.

R is a strict total order: R is an s-connected partial order.

R is an equivalence relation: R is reflexive and transitive and symmetric.

 17

Partial order:

 o

 o

o o

o

(ir)reflexivity understood:

 o

 o

o o

o

Transitivity understood:

 o

 o

o o

o

Direction of the graph understood:

 o

 o o o o

o o o o

o

Typical examples:

Linear time:

Branching time:

 18

Trees:

Part-of structures

 19

We indicate partial orders with variants of ≤, ⊑, ⊆ and strict partial orders with

variants of <, ⊏, ⊂.
Let < be a (strict) linear order.

< has a begin point iff ∃x∀y[¬(y < x)
< is left continuing iff < has no begin point
< has an end point iff ∃x∀y[¬(x < y)
< is right continuing iff < has no end point

< is dense iff ∀x∀y[(x < y) → ∃z[(x < z) ∧ (z < y)]]
Between every two points there is a third point

< is discrete iff ∀x[∃y[x < y] → ∃y[(x < y) ∧ ¬∃z[(x <z) ∧ (z < y)]] ∧

 ∀x[∃y[y < x] → ∃y[(y < z) ∧ ¬∃z[(y <z) ∧ (z < x)]] ∧

In a linear order we call {y: x < y} the set of successors of x in < and
 {y: y < x} the set of predecessors of x in <.

If x has successors in < then it has a direct successor, and if x has predecessors
then it has a direct predecessor.

The order of natural numbers ℕ = {0,1,2,3,...} ordered by <.

The first order theory of natural numbers (ordered by <) is:
 < is a discrete linear order which has a begin point and is

 right continuing.

The order of natural numbers is called the Standard Model of the first order theory

of natural numbers, and in fact, of any theory of natural numbers.

We would like to find a set of axioms that define the natural numbers, i.e. that are true

at the standard model and only at the standard model. But:

Fact: there is no first order theory that defined the order of natural numbers.

 This means:

 Any first order theory is going to be true on non-standard models as well.

The reason: The order of natural numbers is continuous, it allows no gaps (two sets

approaching each other but never reaching). Continuity cannot be defined in first

order predicate logic.

Standard model:

0 1 2 3 4 5 6 7 8

Non-standard model:

0 1 2 3 4 5 6 7 8 ‒4’ ‒3’ ‒2’ ‒1’ 0’ 1’ 2’.....

The natural numbers with a copy of the integers after it satisfies all the same first

order axioms as the standard model

 20

Equivalence relations and partitions: is as old as + age classes

An equivalence relation on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}:

o o 8 o o 9

1 2

 4 o o 5 10 o

o 6 o o 7

3

Drawing lines around the islands:

o o 8 o o 9

1 2

 4 o o 5 10 o

o 6 o o 7

3

A partition on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

o o 8 o o 9

1 2

 4 o o 5 10 o

o 6 o o 7

3

 21

XV. AMBIGUITY

1 Lexical ambiguity.

(1) I took my money to the bank. Reading 1: And deposited it there.

 Reading 2: And buried it there.

Ambiguity of the lexical meaning of bank.

A. Lexical drift: adjective knap

Flemish: knap = 1. Intelligent Een knap meisje – an intelligent girl

 2. Admirable Een knappe prestatie – an admirable achievement

 3. Skilful Een knappe chirurg – a skillful surgeon

Dutch: knap = 0. Pretty Een knap meisje – a pretty girl

 1. Intelligent

 2. Admirable

 3. Skilful

In certain idioms 4. Narrow Een knap halfuurtje – ‘a narrow half an hour’

 Narrowly, half an hour

German: knapp = 4 By a narrow margin, Narrow, Short, Brief,

 i..e Knapp verfehlt - Just failed (exam result)

lexicography

B. Systematic Lexical Ambiguity

MASS AND COUNT NOUNS

(using recent work by Susan Rothstein, by me and others)

1. Count nouns and mass nouns

 singular plural Counting

Count Nouns: girl girls one girl three girls

 rabbit rabbits one rabbit three rabbits

Mass Nouns: mud #muds #one mud #three mud(s)

 furniture #furnitures #one furniture #three furniture(s)

Ambiguous: hair My hair is getting grey

 My hairs are getting grey

 22

2. Bare nouns

Bare nouns are nouns that occur in argument position without determiners.

ENGLISH

English has Bare Plural Count nouns:

 (1) a. Dogs were running around.

 b. Dogs play with each other when they are cheerful

 c. There were dogs running around all afternoon.

 d. I am afraid of dogs.

English has Bare Mass nouns:

 (2) a. Mud was thrown at the prime minister.

 b. There was mud on my shoe.

 c. You shouldn’t eat mud.

.

English does not have Bare Singular Count nouns:

 (3) a. #Dog was running around.

 b. #Dog likes each other.

 c. #There was dog running around all afternoon.

 d.#I am afraid of dog.

3. Grinding (down shifting)

 (4) a. After the accident with the fan, there was rabbit all over the wall.

 b. When Fred stopped trying to repair the watch, there was watch all

 over the table.

David Lewis: Universal grinder.

The meaning can shift from count to mass by grinding.

-A shift from the singular count meaning of the noun rabbit

 to a ground mass reading: rabbit stuff

(Downshifting (Landman 2020) is a better term, since the watch in (4b) is not ground.)

In English: grinding is by and large a Last Resort Mechanism (Rothstein 2017)

In (4) we find the bare singular count noun rabbit.

English doesn’t have bare singular count nouns.

We get a grammar conflict.

The conflict can be resolved in some positions in English by grinding.

Not in normal argument position, but in the position that the subject is in in there-

insertion contexts:

 23

Compare (5a) with (5b):

(5) a. When I opened the door of the New York appartment, there were cockroaches

 all over the wall.

 b. After an emergency action with a towel, there was cockroach all over the

 wall.

(5a) does not have a grinding reading, (5b) does have a grinding reading.

This is explained if grinding is indeed a last resort mechanism:

English does have bare plurals, so we get a perfectly felicitous plural interpretation in

(5a): no conflict, no resolution of a conflict, no grinding.

MANDARIN CHINESE

Mandarin Chinese:

1. No number; no lexical distinction between mass and count nouns.

2. Number expressions cannot directly modify nouns.

 #Liăng níu #Liăng ròu

 two cow two meat

3. Classifiers are used to mediate this relation.

 #sān rén #sān jiǔ

 three man three wine

 sān gè rén sān píng jiǔ

 three Clgeneral man three bottles of wine”

Classifiers exist and are normal in many languages:

English: collection classifiers: a flight of birds, a school of fish

 container classifiers: a bottle of milk

Classifiers are like packagers (the opposite of grinders)

English: classifiers are derived from lexical nouns: exception head in head of cattle.

Cassifier languages: classifiers are generally underived and obligatory for counting.

Mandarin does distinguish count and mass nouns grammatically at this level

(i.e. not at the level of N, but yes at the level of NP).

Also, Mandarin does recognize the conceptual distinction between prototypically

mass (messy) and propotypically count (objects) at the level of lexical nouns:

The general individual classifier ge goes with nouns that are prototypically count,

but not with nouns that are prototypically mass:

 24

 ✓Liăng ge níu #Liăng ge ròu

 two CL cow two CL meat

This means that while there is no lexical mass/count distinction, the mass/count

distinction does exist in the language.

So it is not the case that Chinese speakers do not have the conceptual disitinction.

4. Mandarin Chinese allows all nouns as bare nouns.

What about the grinding context?

 (6) Qiang-shang dou shi gou

 wall-topic all copula dog

 - This means: There are dogs all over the wall (doggy wallpaper)

 - This does not mean: There is dog all over the wall (grinding reading)

 - To express the ground reading, you need to use gou-rou/dog meat

Conclusion:

With respect to grinding, Chinese works like English:

- grinding is a last resort device which comes into play in the case of a conflict.

- since in Chinese all nouns occur bare anyway, a plural interpretation is in principle

available in (6).

-No grammatical conflict, no grinding.

BRASILIAN PORTUGUESE

Brasilian Portuguese has number, and bare plural count nouns (like English), but also

allows bare singular count nouns.

(7) Eu vi criança na sala. ✓E ela estava ouvindo / E elas estavam ouvindo.

 I saw child in the room. And she was listening/ And they were listening

(8) Elefante anda um atrás do outro.

 Elephant[sing] walk[sing] one behind of the other.

 Elephants walk one after the other.

Elephant walk after each other meaning: Elephants walk after each other

In Brasilian Portuguese, what readings you get is dependent on aspect:

In the perfective aspect, the facts are the same as in Chinese: no grinding.

In the imperfective aspect, you get an ambiguity between a plural and a grinding

reading:

 25

(9) a. Depois do acidente, teve cachorro na parede in teira

 After the accident was[perfective] dog in the wall whole

Only reading: There were dogs on the wall

No grinder reading

 b. Depois do acidente, tinha cachorro na parede in teira

 After the accident was[imperfective] dog in the wall whole

Ambiguous: There was dog-stuff on the wall/ there were dogs on the wall.

Three languages, three different patterns to do with how bare nouns work in the

grammar of these languages.

(Yet different:

YUDJA (Western Amazon Language)

No mass nouns, only count nouns. Countextually available portioning allows

counting for all nouns:

(1) Txabiu apeta pe

 Three blood dripped Three puddles/spots, etc of blood dripped)

FOODSTUFF NOUNS

English:

(9) a. There is apple in the salad.

 b. There is pig in the salad Grinding

cf: In the restaurant with three Michelin stars I take a hair out of my soup and say:

(10) Yeagh, there is Cordonbleu cook in this soup.

Where has the big apple gone that was lying here?

(11) #There is big apple in the salad

The contrast:

(12) a. There is big dog in the salad (Labrador)

 = grinding: there is stuff in the salad derived from big dog

 b. There is big banana in the salad

 = Salad with a whole banana in it

 ≠ grinding: there is stuff in the salad derived from big banana

 26

Why is (11) weird and doesn't it have reading (12b) in analogy to (12a)?

Answer: (Landman and others)

Foodstuff nouns like apple are ambiguous between a count and a mass interpretation

-big does not modify prototypical mass nouns

Distributive adjectives:

(1) a. The noisy boys – The boys are noisy distributive: individually noisy

 collective: noisy as a group

 b. The big boys – the boys are big only distributive: individually big

Distrivutive adjectives can modify neat mass nouns, aggregate mass nouns,

but not mess mass nouns, prototypical mass nouns:

(2) a. The big furniture – The furniture is big.

 b. #The big mud – The mud is big.

-Specific assumption: The head noun of the bare noun (i.e. apple) determines whether

the grinding strategy is available or not.

So:

(1) The fooodstuff noun apple is lexically ambiguous between a count and a mass

 noun interpretation.

 The complex big apple is not ambiguous in the same way: there is no food stuff:

 big apple.

(2) In the bare noun big apple, apple is the head, and it allows a mass interpretation,

 hence no conflict, no grinding (because bare mass nouns are allowed in English).

(3) However, big can not modify the mass interpretation of apple, only the count

 interpretation.

(4) We get a conflict after all

But, by assumption, we can no longer resolve this conflict by grinding

(because it is the head that determines whether you will grind or not).

In other words:

The last resort nature of grinding predicts that since the head noun banana/apple has a

felicitous mass reading in this context, there is no grinding.

But then big must apply to the mass interpretation, which is weird.

Dog does not have a mass interpretation, so dog can be ground in this context. If you

can grind dog, you can grind big dog, hence the felicity of (12a).

Does this make sense?

Yes, when we look cross-linguistically.

 27

Mandarin Chinese

(12) a. Shala li you pinggui foodstuff

 Salad inside have apple

 b. Shala li you zhu conceptually count

 Salad inside have pig

(12a) is ambiguous:

-There are apples in the salad

-There is apple-stuff in the salad

(12b) is not ambiguous:

(12b) means: there is a whole pig in the salad

(12b) does not mean: there is pig-meat in the salad

Foodstuff nouns. Rothstein 2017 calls them horeca nouns. Horeca is the dutch

acronym for: hotels, restaurants, cafés.

(So, apple counts as a foodstuff noun in Mandarin, but pig does not, even though pigs

are, of course, eaten a lot in China. But there is a word for pork, pigmeat. Even if

there isn’t such a word, say, for dog meat, the fact that dogs are eaten doesn’t mean

that dog is a foodstuff noun. In fact tests like the above tell us which nouns are

foodstuff nouns in the language.)

Brasilian Portuguese

Change dog to apple:

Both in the imperfective and in the perfective do you get two readings:

-There are apples in the salad

-There is apple-stuff in the salad

This suggests indeed that foodstuff nouns are systematically ambiguous between mass

and count readings.

Conclusion:

Cross linguistic variation, but systematic ambiguities and systematic connections:

For singular count nouns in English we find two readings:

-a lexical count reading

-a derived ground reading, derivable in contexts of conflict

For foodstuff nouns in English we find two readings:

-a lexical count reading

-a lexical mass reading

And there is reason to think that there are two distinct mass readings:

-lexical mass vs. ground mass

 28

We see that Mandarin Chinese and Brasilian Portuguese in essence bring out the same

distinctions, with some differences:

-Mandarin Chinese does not have grinding (well, at least not in the examples studied

here), because there isn’t a conflict to be resolved.

-In Brasilian Portuguese, grinding is not a last resort option, but generally available

(in the imperfective).

Thus, the ambiguities form regular patterns: there is method in this madness.

 29

2. Syntactic ambiguity.

(1) Old men and women danced. Reading 1 entails: Old women danced.

 Reading 2 doesn't entail: Old women danced.

This is an ambiguity of the scope of old.

Usual assumption: represented in syntactic constituent structure (at surface structure):

 NP NP

AP NP NP CONN NP

old NP CONN NP AP NP and women

 men and women old men

 30

RELATIVE CLAUSES

 a girl

(2) a. In this opera, the prince is in love with the girl who doesn’t love him

 every girl

 a girl

 b. In this opera, the prince is in love with the girl , who doesn’t love him

 #every girl

(2a) is a restrictive relative, (2b) a non-restrictive relative, an appositive.

The data shows a similarity between non-restrictive relatives and discourse anaphora:

 a girl she

(3) a. In this opera, if the girl hides in the cupboard, it is because she doesn’t

 every girl #she

 want to meet the prince.

Syntactic ambiguity of the relatives:

Restricted relative:

 DP

 D NP

 |

a/the/every NP CP

 | who doesn’t love him

 girl

Non-restricted relative:

 DP

 DP PRED[CP]

 who doesn’t love him

 D NP

 | |

a/the/every girl

The syntactic ambiguity accounts for the discourse anaphora facts:

-in the restrictive relatives there is normal binding

-the non-restrictive relative patterns with discourse anaphora. It adjoines to a full DP,

which functions as its discourse anaphora antecedent.

 31

3. Scope ambiguity: quantifiers and negation (English)

(3) Everybody isn't smart.

Reading 1: x[SMART(x)]  in the scope of 

Reading 2: x[SMART(x)] x in the scope of 

Usual assumption: not represented in syntactic constituent structure (at surface structure).

Alternative approaches:

I. Movement. Ambiguity is represented in constituent structure at a different level:

Logical Form.

-Build one surface structure.

-Allow scope taking operators to be moved, creating logical forms (For quantifiers,

this is in essence what Frege did). This allows two logical representations.

-Interpret these two logical representations.

Theoretical Claim: There is a level of Logical Form ordered after the surface syntax:

Semantic interpretation takes place after the surface structure is fully derived.`

II. Storage. Ambiguity is represented in semantic derivation: the same syntactic

constituent structure at surface structure is derived in two different ways:

-the semantic operations for building the meaning of one surface structure for (1) can

be applied in two different orders, or, more commonly, combining the interpretation

of a scopal expression can be delayed in the derivation, with the interpretation stored

and retrieved at a later stage of the derivation.

This allows for different derivations of the same surface structure with different

scopal interpretations.

Theoretical Claim:

You don't need to wait with interpreting till you have derived surface structure, there

is no independent level of logical form.

III. Type shifting. The effect of storage or movement can be captured by a semantic

operation which shifts the normal, minimal interpretation of a scopal expression to an

expression of a higher logical type which will give it wide scope.

With the choise of not applying the shift and applying the shift, you derive one

surface structure with two interpretations.

Theoretical Claim:

You don’t need movement or storage for this.

Evaluating these approaches requires more semantic technique than we have here,

they are discussed in more detail in Advanced Semantics.

Much harder to get in other languages (Dutch, Hebrew). Although, I heard someone

say the following in the tram in Amsterdam one day:

Elke verandering is geen verbetering

Every change is no improvement = Not every change is an improvement

So it exists, even though it sounds like a translation from English to me.

 32

-Scope ambiguity: multiple quantifiers.

(4) Every man admires a woman. Reading 1: His mother. (or a list…)

 Reading 2: Madonna.

 x[MAN(x) → y[WOMAN(y)  ADMIRE(x,y)]]

 y[WOMAN(y)  x[MAN(x) → ADMIRE(x,y)]]

(5) Some man admires every woman.

Inverse reading is a bit harder to get (but try intonation: no stress on some man +

stress on every woman).

But the inverse reading is easy to get in other cases:

(6) A flag hung in front of every window.

 A flag spanned every window from left to right

cf. the contrast in (7):

 (7) a. At the finish, a bus is waiting for every participant from Tietjerksteradeel.

 Preferred reading: x[BUS(x)  y[P(y) → AWAIT(x,y)]]

 b. At the finish, a medal is waiting for every participant from Tietjerksteradeel.

 Preferred reading: y[P(y) → x[M(x)  AWAIT(x,y)]]

 Inverse scope: easy to get because medal naturally has a relational

 interpretation ('her medal'), and the implicit argument is easily bound by

 the other quantifier: but that requires inverse scope:

 y[P(y) → x[M(x,y)  WAIT(x,y)]]

(8) a. In New York City a pedestrian is run over by a car every 3 minutes.

 b. In Soviet Russia a tour guide accompanied every foreign visitor.

The readings in scope ambiguities with multiple quantifiers seen so far are not

independent: one reading entails the other: i.e. yx[R(x,y)] entails xy[R(x,y)],

but not vice versa.

In general, if one reading α entails the other β, you have to take into account the

possibility that the grammar generates only the weaker reading β, and derives in

context the interpretation as a special case.

This is what we assume for three cats are smart: most of us let the grammar generate

an at least interpretation and see the stronger exactly interpretation as a special case:

we don't assume an ambiguity.

This strategy has been attempted for scope ambiguities as well (by Tanya Reinhart in

the seventies), but not succesfully.

If the readings are logically independent, such a pragmatic strategy will not work.

In that case you either have to argue that the grammar derives a third weaker reading γ

that is entailed both by α and by β and treat both α and β as special cases (this has

been attempted by Kempson and Cormack in the early eighties, also not succesfully, I

think), or you have to accept that there is indeed an ambiguity that the grammar must

derive.

 33

4. Collective-distributive ambiguity.

Predicates of individuals: have blue eyes:

Distributive interpretation:

 (8) a. John and Bill have blue eyes iff John has blue eyes and Bill has blue

 eyes iff each of John and Bill has blue eyes.

 b. Three boys have blue eyes iff there is a group of three boys and each of

 those three boys has blue eyes.

Predicates of groups of individuals: meet in the park:

In simple cases: collective interpretation:

 (9) a. John and Bill met in the park.

 does not mean: John met in the park and Bill met in the park.

 does not mean: each of John and Bill met in the park.

The intransitive predicate meet in the park is not a predicate of individuals.

 b. Three boys met in the park.

 means: there is a group of three boys and that group met in the park.

 does not mean: there is a group of three boys and each of those three

 boys met in the park.

Predicates of individuals or groups of individuals: carry the piano upstairs:

Collective/distributive ambiguity:

 (10) a. John and Bill carried the piano upstairs.

 Reading 1: John and Bill together carried the piano upstairs,

 John and Bill carried the piano upstairs as a group. (Collective)

Diagnostics of collective reading: weak involvement of the group members:

the boys carried the piano upstairs allows a boy that doesn't do any carrying but

walks in front with a flag.

 Reading 2: John carried the piano upstairs and (after that) Bill carried

 the piano upstairs. (Distributive)

 b. Three boys carried the piano upstairs.

 Reading 1: There is a group of three boys, and as a group, they carried

 the piano upstairs. (Collective)

 Reading 2: There is a group of three boys, and each of those three boys

 carried the piano upstairs (Distributive).

FACT: For sentences with multiple noun phrases we find scopal and non-scopal

interpretations.

 34

Example:

 (11) Two flags hung in front of three windows.

Non-scopal reading: Representation something like the following:

 X[FLAG(X)  |X|=2  Y[WINDOW(Y)  |Y|=3  HIFO(X,Y)]]

f1+f2 → w1+w2+w3

Two flags hung in front of three windows.

We went into town, and saw two flags sown together spanning three windows.

Theories of plurality discuss whether there is one non-scopal reading or several

(the question is: do we need to distinguish: group f1+f2 spans w1+w2+w3 from say:

f1 spans w1+w2+w3 and f2 spans w1+w2+w3?)

Models for non-scopal readings involve maximally two flags and three windows.

Cumulative readings (total-total)

20 Chickens laid 140 eggs last week.

20 CH + 140 eggs + every one of these chickens laid some of these eggs

 + every one of these eggs was laid by one of these chickens

These readings are not collective: laying, give birth to are non-collective relations.)

(argument from Landman 1994, 2000)

Collective:

(1) a. Five women met with ten children 5 – 10

 b. Ten women met with five children 10 – 5

Cumulative:

(2) a. Five women gave birth to ten children 5 – 10

 b. #Ten women gave birth to five children #10 - 5

Why the infelicity of (2b)?

Because give birth to does not allow a collective interpretation.

But then the felicitous (2a) is not collective either.

So cumulative readings and collective readings are not the same thing.

Note: I say infelicity of (2b), but I am not saying that (2b) is strictly speaking

infelicitous. Rather it is uncomfortable. Why? Because it seems to treat giving birth

as something that can be treated as the responsibility of the whole group of ten

women. The point is: that is a collectivity effect and often uncomfortable (as group

responsibiity often is).

 35

Why do we get this effect in (2b)? Because (2b) cannot have a cumulative reading

(because the numbers don't allow a cumulative reading).

Why don't we get this effect in (2a)? Because (2a) does allow a cumulative reading.

If there were only a collective reading, then (2a) should be as uncomfortable as (2b),

but it is not. The existence of cumulative readings explains the contrast.

Scopal readings

Every theory needs to distinguish non-scopal readings from scopal readings, which

associate with distributive interpretations.

Models for scopal readings involve a maximum of two flags and six windows, or six

flags and three windows.

The most natural scopal interpretations of (12) are:

Distributive-flag takes scope over collective-window: RECTO SCOPE

X[FLAG(X)  |X|=2  3 windows per flag

 x  X: Y[WINDOW(Y)  |Y|=3  HIFO(x,Y)]]

f1 → w1+w2+w3

f2 → w4+w5+w6

Two flags hung in front of three windows:

We found two three-window spanning flags.

Distributive-window takes scope over collective-flag: INVERSE SCOPE

Y[WINDOW(Y)  |Y|=3  2 flags per window

 y  Y: X[FLAG(X)  |X|=2  HIFO(X,y)]]

f1+f2 → w1

f3+f4 → w2

f5+f6 → w3

Two flags hung in front of three windows.

Of windows with two flags, we found three.

 We’ve seen many windows with one flag. What about two flags?

 Well, two flags…hm…two flags….let me count….

 Ok, two flags hung in front of three windows.

In this case, the recto-scope reading and the inverse scope reading are logically

independent, neither entails the other.

 36

This is evidence that a mechanism for recto and inverse scope must be part of the

grammar.

-Scope islands

 A medal was given to every girl

 A medal that was given to every girl was put in the museum.

Unavailable reading: (wide scope of every girl)

x[Girl(x) → y[Medal(y)  z[Give(z,y,x)  PIM(y)]]]

For every girl, there is a medal that was given to her and put in the museum.

Available reading: (narrow scope of every girl)

y[Medal(y)  x[Girl(x) → z[Give(z,y,x)]]  PIM(y)]

Some medal was put in the museum and each girl was given that medal (say, in turn).

Observation:

-every girl can take wide scope over a medal if the latter is a co-argument of the

verbal predicate

-every girl cannot take wide scope out of a relative clause over the head of the relative

a medal.

Relative clauses are scope islands.

5. De dicto-de re- ambiguity.

Intensional contexts have scope.

-Modals: may

 (12) As far as I know, everybody may have done it.

 a. x[may(DONE(x,it))]

 b. may(x[DONE(x,it)])

Reading a.: Beginning of a detective novel.

Reading b.: Towards the end in a famous detective novel by Agatha Christie.

-Intensional verbs: try

 (13) John tries to find a unicorn

Representation, something like the following:

 a. TRY(j,y[UNICORN(y)  FIND(j,y)]) [de dicto]

 b. y[UNICORN(y)  TRY(j,FIND(j,y))] [de re]

The de dicto reading does not entail that there is a unicorn:

TRY-TO-FIND is not a relation between John and an actual unicorn, but a relation

between John and the unicorn-property:

John tries to bring himself in a situation where he has found an instance of the

unicorn-property.

 37

Situation 1: you see John with a unicorn-detector searching the beach.

You ask me: what is he doing. I say: (13) John tries to find a unicorn.

(13) is true on the de dicto reading, false on the de re reading

The de re reading does entail that there is a unicorn:

The sentence expresses that there is an actual unicorn, say, Fido, and John tries to

bring himself in a situation where he has found Fido.

Situation 2. We are inside a Harry Potter style novel. Unicorn Fido has escaped.

John has always thought that Fido is Tricorn, he is too vain to wear glasses. But we

are all looking for Fido. A passerby asks me: what is John doing. I say

(13) John tries to find a unicorn.

(13) is true on the de re reading, false on the de dicto reading

de dicto/de re readings are generally logically independent, although it may require

some work to construct models that show that.

 38

-Propositional attitude verbs: know, believe:

 (14) John believes that a former soccer player was elected Governer.

 a. BELIEVE(j, y[FSP(y)  EG(y)]) [de dicto]

 b. y[FSP(y)  BELIEVE(j,EG(y))] [de re]

Reading a:

John reads in the newspaper: "The newly elected governer used to play Rambo."

He thinks Rambo is a soccer team, and he tells me: "A former soccer player got

elected governer." I report what he told me to you: I say (14).

 (14) John believes that a former soccer player was elected Governer.

I report a belief of John about the property former soccer player: in the world

according to John, the newly elected governer is a former soccer player.

(14) is true, even though John has no belief about any actual individual that that

individual got elected governer.

Reading b:

John watched the Governer election, and saw there Arnold getting elected. But he

wasn't wearing his glasses, and he thought it was Johan Cruyff. He thinks that Johan

Cruyff got elected governer. Not knowing any Dutch, but having seen Johan Cruyff

on Dutch television a lot while zapping, he thinks that Johan Cruyff is the Dutch

prime minister.

John says to me: "Johan Cruyff got elected governer."

Now, I know very well who Johan Cruyff is, and that he is a famous former soccer

player, but I don't know that John doesn't know that, and I do know that you don't

know who Johan Cruyff is. For the latter reason, I report what John said to me to you

by saying (14).

(14) John believes that a former soccer player was elected Governer.

In this case, John would not himself accept: "A former soccer player got elected

governer." (He would accept: 'The Dutch prime minister got elected governer.").

What I report to you by saying (14) is a belief of John about Johan Cruyff, about

someone who actually is a former soccer player.

The situations were chosen in such a way that in the first one the de dicto reading is

true, but the de re reading false, while in the second situation the de re reading true,

but the de dicto reading false. So indeed, the two readings are logically independent

(neither entails the other).

This means that if we agree that (14) can be truthfully said in those two types of

situations, there is an ambiguity that the grammar must account for.

 39

XVI. GENERALIZED QUANTIFIERS

I Quantifiers don’t bind variables.

Frege/Tarski:

Quantifier x or x does two things simultaneously:

1. Frege: It binds the occurrences of variable x free in its scope.

 Tarski: It sets up a variation range for the truth value of its scope along the

 variation of the value for variable x.

2. Frege: It expresses its lexical meaning.

 Tarski: It expresses a constraint according to its lexical meaning on this variation

 range.

Modern semantic theories for natural language starting in the 1960s with the work of

Richard Montague, reported in the posthumously published paper: Montague 1973:

'The proper treatment of quantification in ordinary English.'

Very similar ideas were developed roughly simultaneously in David Lewis' paper

'General Semantics', published in 1970.

The linguistic aspects of this work were strongly influenced by Montague’s

interaction at the time with Barbara Partee, who, in the years after Montague’s death,

put Montague style semantics on the map as a field in linguistics, and is pretty much

‘the mother of our field’.

Montague-Lewis: Successful compositional semantic analysis of natural language

quantification becomes possible only when we realize that for

natural language quantification the Frege/Tarski theory is wrong.

(Note: Montague and Lewis do not say this explicitly, but it follows from their work)

And what is wrong, is part one of the Frege/Tarski analysis of quantification:

Montague-Lewis: Natural language quantifiers do not bind variables.

(Montague doesn't say this explicitly, but it follows from the theory in Montague

1973. Lewis is explicit about this.)

For quantification in natural language, we must separate the setting up of Tarski's

variable range from the lexical restriction on the variable range: quantifiers only do

the latter.

As it turns out, this separation is linguistically motivated both from the perspective of

variable binding, and from the perspective of quantification.

Variable Binding: quantifiers do not bind variables, because variables are

 already bound inside the scope of the quantifier.

 40

Some linguistic evidence.

1. Evidence from variables: reflexives.

1a. Reflexives without quantificational binders.

 (1) Every boy admires himself.

 x[BOY(x) → ADMIRE(x,x)]

 Frege/Tarski: The quantifier x binds the interpretation of the reflexive,

 the third occurrence of x.

Problems:

-Non-quantificational subjects.

 (2) John admires himself.

 ADMIRE(j,j)

Intuitively, the interpretation of the reflexive is bound in (2) in the same way as it is in

(1). (i.e. we do have something of the form ADMIRE(α,α)) in the semantics).

But there is no quantifier in (2) and no variable, and hence no binding operator.

-No subjects.

 (3) a. To admire oneself too much is regarded as vanity.

 b. Excessive admiration of oneself is regarded as vanity.

Intuitively, the reflexive is bound in the infinitive and in the noun phrase in the same

way as it is in (1) and (2).

(We need, in the semantics, something of the form ADMIRE(α,α)).

But there is no subject, let alone a quantificational subject binding the reflexive.

1b. Reflexives in VP-ellipsis.

VP-ellipsis:

 (4) John is smart and Mary is too.

 be smart be smart

 John is smart and Mary is smart

 (5) John kissed Ronya and Mary did too.

 kiss Ronya kiss Ronya

 John kissed Ronya and Mary kissed Ronya.

 (6) John likes himself and Mary does too. (sloppy identity reading)

 like yourself like yourself

 John likes himself and Mary likes herself.

 (6) Every boy likes himself and Every girl does too.

 like yourself like yourself

 Every boy likes himself and Every girl likes herself.

 41

Think about (6):

 x[BOY(x) → LIKE(x,x)]  y[GIRL(y) → ?]

What we want is a one-place predicate, the interpretation of like yourself in which the

variable is bound:

x[BOY(x) → like yourself(x)]  y[GIRL(y) → ?(y)]

x[BOY(x) → like yourself(x)]  y[GIRL(y) → like yourself (y)]

Lambda Notation (to be defined shortly):

 x.(x)

 The property that you have if  is true of you.

 like yourself : z.LIKE(z,z)

 The property that you have if you like yourself.

Equivalences:

x[BOY(x) → LIKE(x,x)]  y[GIRL(y) → ?(y)]

Equivalent in property form:

x[BOY(x) → z.LIKE(z,z) (x)]  y[GIRL(y) → ?(y)]

For every x if x is a boy then x has the like-yourself property

x[BOY(x) → z.LIKE(z,z) (x)]  y[GIRL(y) → z.LIKE(z,z) (y)]

 For every x if x is a boy then x has the like-yourself property and

 For every y if y is a girl then y has the like-yourself property.

Every boy likes himself:

x[BOY(x) → LIKE(x,x)]

x[BOY(x) → z.LIKE(z,z) (x)]

every: x[------(x) → --------------(x)]

 BOY z.LIKE(z,z)

every relates two one-place predicates:

 EVERY(BOY, z.LIKE(z,z))

But then, the crucial observation is:

The quantifier doesn’t bind any variables,

because variables like reflexives are already bound (in the predicate, by

the -operator).

 42

A footnote on strict readings

Background: pronouns

(1) John likes his mother and Mary does too.

1. Sloppy reading: John likes John’s mother and Mary likes Mary’s mother.

2. Strict reading: John likes John’s mother and Mary likes John’s mother.

Our argument is not directly concerned with the interpretation of strict/sloppy identity

for pronouns. We are interested in reflexives because these need to be bound. We saw:

(2) John likes himself, and Mary does too

 1. Sloppy reading:

 λz.LIKE(z,z)(j) ∧ ?(m)

 λz.LIKE(z,z)(j) ∧ λz.LIKE(z,z)(m)

 LIKE(j,j) ∧ LIKE(m,m)

(3) Every boy likes himself, and Every girl does too

 1. Sloppy reading:

 ∀x[Boy(x) → λz.LIKE(z,z)(x)] ∧ ∀y[GIRL(y) → ?(y)]

 ∀x[Boy(x) → λz.LIKE(z,z)(x)] ∧ ∀y[GIRL(y) → λz.LIKE(z,z)((y)]

 ∀x[Boy(x) → LIKE(x,x)] ∧ ∀y[GIRL(y) → LIKE(y,y)]

The question is: are there strict readings for reflexives?

We don’t expect any such reading for examples like (3), but what about (2):

(2) John likes himself, and Mary does too

 2. Strict reading:

 LIKE(j,j) ∧ LIKE(m,j)

Strict readings are often harder to get, but they are possible.

From the literature:

(4) Bill defended himself before John did.

Huge literature in syntax and semantics. But note the following:

 John likes himself

A λz.LIKE(z,z)(j) ⇔
B LIKE(j,j) ⇔

C λz.LIKE(x,j)(j)

The C form is not simply an entailment but is equivalent to A and B.

While we don’t assume that what can be reconstructed as the meaning of the elided

VP can be any entailed property of the subject, the relation between A and C is, of

course, much closer. If we assume that, under contextual stress, the equivalence

between A, B and C can be used to reconstruct the VP property, we can derive:

 John likes himself and Mary does too

 λz.LIKE(x,j)(j) ∧ λz.LIKE(x,j)(m)

 LIKE(j,j) ∧ LIKE(m,j)

 43

1c. Pronouns ‘bound’ by quantifiers that cannot bind them: Functional readings.

As before, we add the definite operator to the logical language:

If P ∈ PRED1, then σ(P) ∈ TERM

 d if ⟦P⟧M,g = {d}

 ⟦σ(P)⟧M,g =

 undefined otherwise

(7) The woman that every Englishman adores most is his mother.

Meaning of (7):

 x[ENGLISHMAN(x) →

 For every englishman

 (y.WOMAN(y)  ADORE-MOST(x,y)) = (y. Mother-of(y,x))]

 The woman he adores most is his mother

To read this formula, read the predicates first:

y.WOMAN(y)  ADORE-MOST(x,y))

the property you have if you are a woman and x adores you most

y. Mother-of(y,x)

The property that you have if you are x 's mother

σ is the definiteness operator, so:

σ(y.WOMAN(y)  ADORE-MOST(x,y)))

The woman that x adores most

σ(y. Mother-of(y,x))

The mother of x

σ(y.WOMAN(y)  ADORE-MOST(x,y))) = σ(y. Mother-of(y,x))

The woman that x adores most is the mother of x.

Problem: this involves scoping every englishman out of the relative clause that every

Englishman adores.

But we have seen that expressions like every englishman cannot scope out of relative

clauses, since relative clauses are scope islands.

 44

(7) The woman that every Englishman adores most is his mother.

 IP

DP I’

DET NP I DPPRED

the N CP is DET N

 woman C IP his mother

 that DP I’

 D NP adores-most

 every englishman

∀x[ENGLISHMAN(x) → IP

DP I’

DET NP I DPPRED

the N CP  is DET N

 =

 woman C IP his mother

 σ(λy.MOTHER(y,x)))]
 that DP I’

 D NP adores-most

 every englishman

(σ(λy.WOMAN(y) ∧ ADORES(x,y)

Problem: in order to bind the variable x in his mother, every englishman must be

given scope out of the relative clause scope island.

 45

Alternative analysis: Functional readings.

(7) is analyzed as an equation of two functions f and g, both of which are functions

from individuals to individuals:

 f,g: DM → DM

The woman that every Englishman adores most

Interpretation: The function f that maps every Englishman onto the woman that he

 adores most.

his mother

Interpretation: The function that maps every individual onto his/her mother.

We can represent these readings also with help of the λ-operator. We interpret the

expression his mother (one's mother) as:

g x. (y.MOTHER(y,x))

We read this as:

the function that maps every individual x onto (y.MOTHER(y,x)), the mother of x.

f x  ENGLISHMEN: σ(y.WOMAN(y)  ADORE(x,y)))

We read this as:

the function that maps every englishman x onto the woman that x adores most.

 (7) The woman that every Englishman adores most is his mother.

Semantics: We restrict the mother function to the common domain, englishmen:

 when restricted to their common domain:

g↾ENGLISHMEN = x  ENGLISHMEN: (y.MOTHER(y,x))

We read this as:

the function that maps every englishman onto his mother.

And (7) is interpreted as (8):

(8) f = g↾ENGLISHMEN

or explicitly:

(8) x  ENGLISHMAN: σ(y.WOMAN(y)  ADORE(x,y)))

 =

x  ENGLISHMAN: (y.MOTHER(y,x))

(7) then expresses that the function that maps every Englishman onto the woman he

adores is the function that maps every Englishman onto his mother.

It turns out that an elegant compositional semantics can be given that derives for the

woman that every Englishman adores this functional interpretation f, without giving

every Englishman wide scope out of the relative clause.

(7) The woman that every Englishman adores most is his mother.

 46

 IP

DP I’

DET NP I DPPRED

the N CP is DET N

 =

 woman C IP his mother
 x  [ENGLISHMAN]: (y.MOTHER(y,x))

 that DP I’

 D NP adores-most

 every englishman
 x  ENGLISHMAN: σ(y.WOMAN(y)  ADORE(x,y)))

An analysis in terms of functional readings along those lines is generally assumed to

be the correct way of analyzing cases like (7).

But this means, again, that the pronoun his in his mother in (7) is not bound by the

quantifier every Englishman at all. It is bound inside the expression his mother:

The interpretation of his mother is the function denoted by the expression:

x. (y.MOTHER(y,x)

The function that maps every x onto x’s mother

and the pronoun his is bound by the -operator in this expression.

Which of his relatives does every Englishman admire most?

Groenendijk and Stokhof, Engdahl, ca. 1980

So, by introducing the λ-operator, we can separate quantification and variable

binding.

The facts about variables suggest that we should.

 47

2. Evidence from quantification.

Applying the Frege/Tarski's analysis of quantifiers to natural language quantifiers has

well known problems.

-There is no good theory of the restricting effect of the noun:

 Every cat is smart.

 x[CAT(x) → SMART(x)]

 Some cat is smart.

 x[CAT(x)  SMART(x)]

Sometimes you use →, sometimes you use . There is no theory of when you use the

one and when the other.

For  and , this is not a very serious problem, since we can introduce restricted

quantifiers (which do not increase the power of the language at all):

 If x is a variable and φ a formula, P a one-place predicate, then

 x  P: φ and x  P: φ are formulas.

 ⟦x  P: φ⟧M,g = 1 iff for every d  ⟦P⟧M,g: ⟦φ⟧M,gx
d = 1; 0 otherwise

 ⟦x  P: φ⟧M,g = 1 iff for some d  ⟦P⟧M,g: ⟦φ⟧M,gx
d = 1; 0 otherwise

 Every cat is smart.

 x[CAT(x) → SMART(x)]

 ∀x ∈ CAT: SMART(x)

 Some cat is smart.

 x[CAT(x)  SMART(x)]

 ∃x ∈ CAT: SMART (x)

But what about other quantifiers?

 Most cats are smart

 Mx[CAT(x) ? SMART(x)]

 Mx  CAT: SMART(x)

Try: Mx[CAT(x)  SMART(x)]
 Mx[CAT(x) → SMART(x)]

You can prove that there is no Frege/Tarski quantifier Mx and connective ?

that get the truth conditions of Most cats are smart right.

You can prove that there is no restricted Frege/Tarski quantifier over individuals

MxCAT that gets the truth conditions of Most cat are smart right.

This requires, of course, a proper definition of a 'quantifier over individuals', but it

reflects the intuition about the semantics of most: most compares the cardinalities of

two sets of individuals.

 48

Montague and Lewis solve these problems by using a different perspective on

quantifiers introduced in logic in the 1950s by Andrej Mostowski, that of

generalized quantifiers.

I will introduce the theory here as a theory of generalized quantificational

determiners, by which we mean expressions like every, some, no, most, at least

three, etc.

The idea is very simple:

 Determiners like every do not express Frege/Tarski quantifiers at all, they

 express relations between sets of individuals.

Analogy:

 S S

DP VP DP VP

John walk

 V DP D N

 kiss Mary Every Boy

 1 2 1

 2

V is a 2 place relation D is a 2 place relation

between individuals between sets of individuals

This idea combines in the following way with the analysis of predicates discussed

above. We argued that in every boy admires himself, the noun phrase every boy or the

determiner every does not bind the reflexive variable at all, that variable is already

bound in the predicate, admires himself.

We analyzed that with the variable binding operation λx:

 admires himself is interpreted as λx.ADMIRE(x,x).

We are not doing without the Frege/Tarski analysis of variable binding:

the semantic interpretation of λx.ADMIRE(x,x) is built, semantically, from Tarski's

variable range.

 <gx
d1, ⟦ADMIRE(x,x)⟧

M,gx
d1>

 <gx
d2, ⟦ADMIRE(x,x)⟧

M,gx
d2>

 <gx
d3, ⟦ADMIRE(x,x)⟧

M,gx
d3>

 ... for every d  DM

 49

The variable range is a function from assignments gx
d, with d  DM to truth values.

Mathematically, we can identify this with a function from objects d  DM to truth

values:

 <d1, ⟦ADMIRE(x,x)⟧
M,gx

d1>

 <d2, ⟦ADMIRE(x,x)⟧
M,gx

d2>

 <d3, ⟦ADMIRE(x,x)⟧
M,gx

d3>

 ... for every d  DM

And mathematically, we can identify this with the set characterized by this function:

 {d  DM: ⟦ADMIRE(x,x⟧M,gx
d = 1}

But this is precisely the interpretation of λx.ADMIRE(x,x).

From this we derive the all important conclusion:

 Tarski's value ranges can be identified with sets of individuals.

Now the two theories come together:

-Predication formation on ADMIRE(x) binds variable x to abstraction operator λx.

 This forms a set of individuals, equivalent to the Tarski value range of

 ADMIRE(x,x): the set of individuals that admire themselves.

-The determiner meaning every in every boy expresses a restriction on this set,

 a restriction which relates it to the set which is the noun interpretation, the set of

 boys.

In sum, then, we get:

 EVERY[BOY,λx.ADMIRE(x,x)]

The semantics of determiner every expresses a constraint on the relation between the

set of boys and the set of self-admirers.

We have now separated variable binding from quantification:

-variable binding is what Tarski assumed it was, except that it is done by operation

λx, and not by quantifiers.

-quantificational determiners express relations between sets of individuals.

The advantage of this perspective for quantificational determiners is that it provides a

unified theory of natural language quantification: in this perspective we can study the

semantic contribution of any determiner element, and, importantly, we can formulate

semantic generalizations about the meanings of classes of determiners.

While developed by Montague and Lewis, the theory was first formulated as a theory

of semantic generalizations about classes of determiners by Jon Barwise and Robin

Cooper in 1981 in a paper called 'Generalized quantifiers and natural language'.

 50

II THE LANGUAGE L5: PREDICATE LOGIC EXTENDED WITH

GENERALIZED QUANTIFIERS

For comparison reasons, we don't redefine quantification along the lines indicated

here, but add the new approach to predicate logic.

Our language L5 has the same syntax as L4, but with the following additions:

DET = {EVERY, SOME, NO, n, AT MOST n, AT LEAST n, EXACTLY n,

 MOST} where n ∈ ℕ and n > 0.

DET  LEX

Abstraction:

If x  VAR and φ  FORM, then λx.φ  PRED1

Quantification:

If α  DET and P,Q  PRED1, then α[P, Q]  FORM

EXIST:

EXIST  PRED1

The semantics for L5 is exactly the same as for L4 with the following additions:

 For every α  DET: ⟦α⟧M,g = FM(α)

 If x  VAR and φ  FORM, then:

 ⟦λx.φ⟧M,g = {d  DM: ⟦φ⟧M,gx
d = 1}

 If α  DET and P,Q  PRED1, then:

 ⟦α[P, Q]⟧M,g = 1 iff < ⟦P⟧M,g, ⟦Q⟧M,g >  ⟦α⟧M,g

 ⟦EXIST⟧M,g = DM

The existence predicate will be useful in some of the technical discussions below.

This leaves the specification of the new lexical items, the determiners:

 For every α  DET: FM(α)  pow(DM)  pow(DM)

 Every determiner is interpreted as a relation between sets of individuals.

 51

FM(EVERY) = {<X,Y>: X,Y  DM and X  Y}

EVERY[CAT, SMART]

 DM

 CAT SMART

FM(SOME) = {<X,Y>: X,Y  DM and X  Y  Ø}

SOME[CAT, SMART]

 DM

 CAT  SMART

FM(NO) = {<X,Y>: X,Y  DM and X  Y = Ø}

NO[CAT, SMART]

 DM

 CAT SMART

FM(AT LEAST n) = {<X,Y>: X,Y  DM and |X  Y| ≥ n}

AT LEAST 3[CAT, SMART]

 DM

 CAT () SMART

 52

FM(AT MOST n) = {<X,Y>: X,Y  DM and |X  Y| ≤ n}

AT MOST 3[CAT, SMART]

 DM

 CAT () SMART

FM(n) = FM(AT LEAST n)

FM(EXACTLY n) = {<X,Y>: X,Y  DM and |X  Y| = n}

EXACTLY 3[CAT, SMART]

 DM

 CAT  SMART

FM(MOST) = {<X,Y>: X,Y  DM and |X  Y| > |X − Y|}

MOST[CAT, SMART]

 DM

 CAT  SMART
 

 53

We can now prove useful things:

 EVERY[CAT, SMART] ⇔ x[CAT(x) → SMART(x)]

 EVERY[CAT, λx.ADMIRE(x,x)] ⇔ x[CAT(x) → ADMIRE(x,x)]

 SOME[CAT, SMART] ⇔ x[CAT(x)  SMART(x)]

 NO[CAT, SMART] ⇔ x[CAT(x)  SMART(x)]

AT LEAST 2[CAT, SMART] ⇔

 xy[CAT(x)  CAT(y)  SMART(x)  SMART(y)  (x  y)]

 etc.

MOST[CAT, SMART] is not equivalent to any L4 sentence.

 EVERY[BOY, λx.SOME[GIRL, λyKISS(x,y)]] ⇔

 x[BOY(x) → y[GIRL(y)  KISS(x,y)]]

SOME[GIRL, λy.EVERY[BOY, λx.KISS(x,y)]] ⇔

y[GIRL(y)  x[BOY(x) → KISS(x,y)}}

 54

Excursus: A note on most

Our semantics:

MOST[A, B]: |A  B| > |A – B|

most A's are B's is true if there are more A's that are B's than A's that are not B.

An obvious alternative:

MOST[A, B]: |A  B| > ½|A|

most A's are B's is true if more than half of the A's are B's

Is there a difference? Not on finite domains, obviously.

But do we native speakers have intuitions about infinite domains?

Cantor told us that there are as many even natural numbers as there are natural

numbers,

but do we have an intuition that (1) below is false (as it is according to our semantics),

rather than infelicitous (as it is, if we assume that ½|A| is not defined, if |A| is infinite)?

(1) Most natural numbers are even.

I don't think we do,

but – interestingly enough – we do have intuitions about comparison between finite

and infinite sets, as in (2):

(2) Most prime numbers are odd.

 In (2) we are comparing the cardinality of the set of odd primenumbers (infinite) and

the cardinality of the set of even primenumbers (one).

We have no problem counting (2) as true.

This is predicted by our semantics of most,

but interestingly enough, not by an analysis that assume that ½|A| is infelicitous if |A|

is infinite, or an analysis that assumes that for infinite sets ½|A| = |A| .

Either analysis predicts incorrectly that (2) is infelicitous or false.

End of excurses

 55

With this new logical language, we can now analyze many new inference patterns,

like:

 {(1),(2),(3)}⇒(4)

(1) There are exactly 10 apples

(2) Every apple is either green or red, not both

(3) Most apples are green

Hence:

(4) At most 4 apples are red

(1) EXACTLY 10[APPLE, EXIST]

(2) EVERY[APPLE, λx.(GREEN(x)  RED(x))  (GREEN(x)  RED(x))]

(3) MOST[APPLE, GREEN]

hence:

(4) AT MOST 4[APPLE, RED]

 DM

 GREEN RED

 6∨7∨8∨9∨10 0∨1∨2∨3∨4

 APPLE

 56

SKETCH OF THE SEMANTICS FOR PARTIAL DETERMINERS.

Note: the analysis is tailored to later discussion in this chapter. It would be better

formulated in a theory that also deals with semantic plurality, but such a theory is only

sketched at the end of this class. The present analysis does not treat collective

readings at all.

We add to the lexicon a special set of determiners:

DETP = {THE. BOTH, NEITHER}

We have the same syntactic rule for DETp as for DET:

If α  DETp and P,Q  PRED1, then α[P, Q]  FORM

We add to the models an interpretation function pair <FM
+,FM

−>, where FM
+ and FM

−

are functions from DETp to pow(pow(DM)  pow(DM), specified below, we call them

the positive extension and the negative extension.

We add the following interpretation rules:

 If α  DETp and P,Q  PRED1, then:

 1 if <⟦P⟧M,g, ⟦Q⟧M,g >  FM
+(α)

 ⟦α[P, Q]⟧M,g
 = 0 if <⟦P⟧M,g, ⟦Q⟧M,g >  FM

−(α)

 ⏊ (undefined) otherwise

Now we specify the lexical meanings of the partial determiners.

In fact, we give here a schema for their interpretation:

If α ∈ DETP then:

 FM
+(α) = {<X,Y>: X,Y  DM and φ(X,Y) and presX}

 FM
−(α) = {<X,Y>: X,Y  DM and ¬φ(X,Y) and presX}

So, both the positive extension and the negative extension have the same

presuppositional clause which depends on the noun argument that the determiner

combines with. When the presupposition is satisfied, the constraint on FM
+(α) is that

some condition φ(X,Y) holds, and on FM
―(α) that that clause φ(X,Y) does not hold.

 57

This means for the truth conditions that:

⟦α[P, Q]⟧M,g
 = 1 iff φ(⟦P⟧M,g,⟦Q⟧M,g) and presP

⟦α[P, Q]⟧M,g

 = 0 iff ¬φ(⟦P⟧M,g,⟦Q⟧M,g) and presP

⟦α[P, Q]⟧M,g

 = ⏊ iff ¬presP

We start with partial determiner THE:

FM
+(THE) = {<X,Y>: X,Y ⊆ DM and X ⊆ Y and presX}

FM
―(THE) = {<X,Y>: X,Y ⊆ DM and X ⊈ Y and presX}

The semantics if THE is the same as that of EVERY: φ(X,Y) = X ⊆ Y.

As we see in the plural cases, this means that the interpretation we generate is the

distributive interpretation.

The presupposition of the partial determiner THE depends on the interpretation of the

noun. To analyse these noun interpretations properly, we need a theory of plurality,

which, as said, I am not giving here. But the idea is quite simple:

the cat presCAT = |CAT| = 1

THE[CAT, SMART] is true if every cat is smart and there is exactly one cat.

THE[CAT, SMART] is false if not every cat is smart and there is exactly one cat.

(meaning: that cat isn't smart)

THE[CAT, SMART] is undefined if there isn't exactly one cat.

the two cats presTWO CATS = |CAT| = 2

THE[TWO CATS, SMART] is true if every cat is smart and there are exactly 2 cats.

THE[TWO CATS, SMART] is false if not every cat is smart and there are exactly 2 cats.

THE[TWO CATS, SMART] is undefined if there aren't exactly 2 cats.

the more than two cats presMORE THAN TWO CATS = |CAT| > 2

THE[MORE THAN TWO CATS, SMART] is true if

 every cat is smart and there are more than 2 cats.

THE[MORE THAN TWO CATS, SMART] is false if

 not every cat is smart and there are more than 2 cats.

THE[MORE THAN TWO CATS, SMART] is undefined if there aren't more than 2 cats.

We will see later that in the semantics for plurality these presuppositions fall out of

the theory naturally.

 58

FM
+(BOTH) = {<X,Y>: X,Y  DM and XY and |X|=2}

FM
−(BOTH) = {<X,Y>: X,Y  DM and X⊈Y and |X|=2}

φ and ψ are strongly equivalent iff they are true in the same models and false

in the same models.

We can show:

BOTH[CATS, SMART] and THE[TWO CATS, SMART] are strongly equivalent

THE[CAT, SMART] and THE[ONE CAT, SMART] are strongly equivalent.

We saw that both has the φ(X,Y)-clause of every.

Neither has the φ(X,Y)-clause of no:

FM
+(NEITHER) = {<X,Y>: X,Y  DM and X  Y = Ø and |X|=2}

FM
−(NEITHER) = {<X,Y>: X,Y  DM and X  Y ≠ Ø and |X|=2}

NEITHER[CAT, SMART] is true if no cat is smart and there are exactly two cats.

NEITHER[CAT, SMART] is false if some cat is smart and there are exactly two cats.

NEITHER[CAT, SMART] is undefined if there aren't exactly two cats.

FEW AND MANY.

Lots of literature. Here, unsatisfactory analysis that only deals with the simplest

cases.

 FM(FEW) = {<X,Y>: X,Y  DM  |XY| < fC(X,Y)}

 FM(MANY) = {<X,Y>: X,Y  DM  |XY| > mC(X,Y)}

Here f is a contextual function that determines, in context a number that counts as

few. Which number this is is contextually determined, and can depend on X, on Y, on

both, or even on a comparison set C distinct from X and Y.

Similarly, m is a contextual function that determines, in context, a number that counts

as many.

Given this semantics,

we expect

FEW[CAT, SMART] to pattern semantically in some ways like

AT MOST n[CAT, SMART],

and we expect

MANY[CAT, SMART] to pattern semantically in some ways like

AT LEAST n[CAT, SMART],

and this is the prediction that interests us here.

There is much more to be said and done about the semantics of few and many (i.e.

readings that are harder to fit in). The semantics given here is introduced here mainly

for comparison reasons later.

 59

III GENERAL CONSTRAINTS ON DETERMINER INTERPRETATION.

[Jon Barwise, Robin Cooper, Ed Keenan, Johan van Benthem]

With some notorious problematic cases, discussed in the literature (eg. few, many,

only as in only cats are smart), natural language determiners all satisfy the following

principles of extension, conservativity and quantity (van Benthem 1983)

EXTENSION

 Determiner α satisfies extension iff for all models M1, M2 and

for all sets X,Y such that X,Y  DM1
 and X,Y  DM2

:

 <X,Y>  FM1
(α) iff <X,Y>  FM2

(α)

 If you assign CAT and SMART the same interpretation in models M1 and M2,

 then α[CAT,SMART] has the same truth value in M1 and M2.

Let FM1
(P) = FM2

(P) = X and FM1
(Q) = FM2

(Q) = Y.

If α satisfies extension, then the truthvalue of α[P, Q] depends only on what is in

XY, not on what is in DM1
 − (XY) or in DM2

 − (XY).

The intuition is the following:

If α satisfies extension then, if we only specify of a model FM(CAT) and

FM(SMART), the truth value of α[CAT, SMART] in M is already determined.

This is a natural constraint on natural language determiners:

The truth value of every cat/some cat/no cat/most cats…is/are smart does not depend

on the presence or absence of objects that are neither cats nor smart.

In a picture:

 DM

 CAT SMART

If α satisfies extension then only what is inside CAT  SMART is relevant for the

truth of α[CAT,SMART]

 DM

 CAT SMART

 60

So: relevant is:

 CAT SMART

Extension: if we extend the domain with stupid dogs, the truth value of

α[CAT,SMART] is unaffected.

Note: the context dependency of many affects judgements for examples like many

cats are smart. The more stupid dogs you add, the fewer cats you need to say: well,

actually many cats are smart.

CONSERVATIVITY

Determiner α is conservative iff for every model M and for all sets X,Y  DM:

 <X,Y>  FM(α) iff <X, XY>  FM(α)

(Barwise and Cooper terminology: α is conservative iff in α[X, Y] α lives on X)

There is another formulation of conservativity and extension, which is useful:

 Determiner α satisfies extension and conservativity iff

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that

X1, Y1  DM1 and X2, Y2  DM2 :

 If X1  Y1 = X2  Y2 and X1 − Y1 = X2 − Y2 then

 <X1,Y1>  FM1
(α) iff <X2,Y2>  FM2

(α).

 If you let x.CAT(x)  SMART(x) and x.CAT(x)  SMART(x) have the

same interpretation in M1
 and M2 then α[CAT, SMART] has the same

truth value in M1 and M2.

Let FM1
(P) = X1 and FM2

(P) = Y1 and FM1
(Q) = X2 and FM2

(Q) = Y2.

If α satisfies extension, and conservativity, then the truthvalue of α[P, Q] depends

only on what is in X1  Y1 (= X2  Y2) and in X1 − Y1 (= X2 − Y2).

The intuition is the following:

If α satisfies extension and conservativity, then if we specify of a model M, not even

what FM(CAT) and FM(SMART) are, but only what FM(CAT)  FM(SMART) and

FM(CAT) − FM(SMART) are, then still the truth value of α[CAT, SMART] in M is

already determined.

 61

This is a natural constraint on natural language determiners:

The truth value of every cat/some cat/no cat/most cat…is/are smart does not depend

on the presence or absence of objects that are neither cats nor smart, and also not on

the presence or absence of smart cookies that are not cats:

it only depends on

what is in the set of cats that are smart,

and

what is in the set of cats that are not smart.

In a picture:

 CAT−SMART CAT  SMART SMART − CAT

If α satisfies extension and monotonicity, then only CAT  SMART and

CAT – SMART are relevant for the truth of α[CAT,SMART]

 CAT−SMART CAT  SMART

Conservativity can be checked in the following pattern:

 α is conservative iff α[CAT, SMART] is equivalent to

α[CAT, λx.CAT(x)  SMART(x)]

α cat is smart iff α cat is a cat that is smart

α cats are smart iff α cats are cats that are smart

cf:

 Every cat is smart iff Every cat is a smart cat

 Most cats are smart iff Most cats are smart cats

 No cats are smart iff No cats are smart cats

Again problematic are context dependent quantifiers like many:

cf. Surprisingly many Swedes are Nobelprize winners. ≠

 Surprisingly many Swedes are Swedish Nobelprize winners.

Other classical problem: only

 Only cats purr ≠

 Only cats are purring cats

But only here is probably a DP modifier. Only the boys came to the party.

 62

QUANTITY (Independent definition technically complex, see literature)

 Determiner α satisfies extension and conservativity and quantity iff

for all models M1,M2, and all sets X1,Y1,X2,Y2 such that

X1, Y1  DM1 and X2, Y2  DM2 :

 If |X1  Y1| = |X2  Y2| and |X1 − Y1| = |X2 − Y2| then

 <X1,Y1>  FM1
(α) iff <X2,Y2>  FM2

(α).

 If you let each of x.CAT(x)  SMART(x) and x.CAT(x)  SMART(x)

 have the same cardinality in M1 as it has in M2, then α[CAT, SMART]

 has the same truth value in M1 and M2.

Let FM1
(P) = X1 and FM2

(P) = Y1 and FM1
(Q) = X2 and FM2

(Q) = Y2.

If α satisfies extension, and conservativity and extension , then the truthvalue of

α[P,Q] depends only on the cardinality of X1  Y1 (= |X2  Y2|) and the cardinality

of X1 − Y1 (= |X2 − Y2|).

The intuition is the following:

If α satisfies extension and conservativity and quantity, then if we specify of a model

M, not even what FM(CAT) and FM(SMART) are, and not even what

FM(CAT)  FM(SMART) and FM(CAT) − FM(SMART) are, but only what

|FM(CAT)  FM(SMART)| and |FM(CAT) − FM(SMART)| are

then still the truth value of α[CAT,SMART] in M is already determined.

This is a natural constraint on natural language determiners:

The truth value of every cat/some cat/no cat/most cats…is/are smart does not depend

on the presence or absence of objects that are neither cats nor smart, and also not on

the presence or absence of smart cookies that are not cats; it doesn't even depend on

what is in the set of smart cats, and what is in the set of non-smart cats,

but only on

how many things there are in the set of smart cats

and on

how many things there are in the set of non-smart cats.

In a picture:

 where n = |CAT  SMART|

 n m where m = |CAT – SMART|

For determiners that satisfy extension, conservativity and quantity we can set up the

semantics in the following more general way.

The independent definition of quantity is formulated in terms of permutations: if you

take objects out of CAT ∩ SMART and replace them by the same number of other

objects, the truth value stays the same, the same for CAT ― SMART.

 63

With these constraints we are now in a position to characterize the meanings of

determiners more narrowly.

We let the model M associate with every determiner α that satisfies extension,

conservativity and quantity a relation rα between numbers.

We associate for every model the same relation rα with α.

In terms of this, we define FM(α) in the following schema for all natural language

determiners that satisfy extension, conservativity and quantity:

(excluding possessive determiners phrases)

Determiner α is an ECQ determiner iff α satisfies extension, conservativity and

quantity

Let α be an ECQ determiner.

 FM(α) = { <X,Y>: X,Y ⊆ DM and <|XY|, |X−Y|)>  rα}

Given this, the meaning of the determiner α is now reduced to the relation rα between

numbers. These meanings we specify as follows:

 rEVERY = {<n,0>: n  ℕ}

 rSOME = {<n,m>: n,m  ℕ and n0}

 rNO = {<0,m>: m  ℕ}

 rAT LEAST k = {<n,m>: n,m  ℕ and n≥k} for k  ℕ

 rAT MOST k = {<n,m>: n,m  ℕ and n≤k} for k  ℕ

 rEXACTLY k = {<k,m>: m  ℕ} for k  ℕ

 rMOST = {<n,m>: n,m  ℕ and n>m}

Let FM(cat)= CAT and FM(smart) = SMART, with CAT, SMART ⊆ DM

⟦α[cat, smart]⟧M,g = 1 iff <CAT, SMART> ∈ FM(α) iff

 <|CAT ∩ SMART|, |CAT ― SMART|> ∈ rα

 64

⟦every [cat, smart]⟧M,g = 1

<CAT, SMART> ∈ FM(every) iff

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ rEVERY iff

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ {<n,0>: n  ℕ} iff

|CAT ∩ SMART| ∈ ℕ and |CAT ― SMART| = 0 iff

|CAT ― SMART| = 0 iff

CAT ⊆ SMART

⟦some [cat, smart]⟧M,g = 1

<CAT, SMART> ∈ FM(some) iff

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ rSOME iff

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ {<n,m>: n  ℕ, m ∈ ℕ and n≠0} iff

|CAT ∩ SMART| ∈ ℕ |CAT ― SMART| ∈ ℕ and |CAT ∩ SMART| ≠ 0 iff

|CAT ∩ SMART| ≠ 0 iff

CAT ∩ SMART ≠ Ø

⟦most [cat, smart]⟧M,g = 1

<CAT, SMART> ∈ FM(most) iff

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ rMOST iff

<|CAT ∩ SMART|, |CAT ― SMART|> ∈ {<n,m>: n  ℕ, m ∈ ℕ and n>m} iff

|CAT ∩ SMART| > |CAT ― SMART|

rEVERY(CAT, SMART) iff |CAT ― SMART| = 0 iff CAT ⊆ SMART

rSOME(CAT, SMART) iff |CAT ∩ SMART| ≠ 0 iff CAT ∩ SMART ≠ Ø

rNO(CAT, SMART) iff |CAT ∩ SMART| = 0 iff CAT ∩ SMART = Ø

rAT LEAST k(CAT, SMART) iff |CAT ∩ SMART| ≥ k

rAT MOST k(CAT, SMART) iff |CAT ∩ SMART| ≤ k

rEXACTLY k(CAT, SMART) iff |CAT ∩ SMART| = k

rMOST(CAT, SMART) iff |CAT ∩ SMART| > |CAT ― SMART|

 65

Some facts about the cardinality of the set of all relations between sets of individuals

and the cardinality of the set of all such relations satisfying extension, conservativity

and quantity:

k! = 1 + … + k =
k ×(k+1)

2
 (Gauss 100! = 5,050)

RELM = pow(pow(DM) £ pow(DM))

RELM is the set of all relations between sets of individuals in DM

If |DM| = n

Then |pow(DM)| = 2n 2n distinct properties

Then |pow(DM) £ pow(DM)| =2(2n)

Then |pow(pow(DM) £ pow(DM))| = 2(2(2n))

So:

|DM| = 1 |RELM| = 16 distinct relations between sets on a domain of 1 ind.

|DM| = 2 |RELM| = 65.536 2 ind

|DM| = 3 |RELM| = 264 (Famous from the Chinese chessboard)

So this is the total number of two place relations between individuals in a domain

of 3 elements

We look at relations satisfying extension, conservatity and quantity.

Let DETM be the set of all relations in RELM satisfying extension, conservativity and

quantity

If |DM| = n

Then |DETM| = 21+ …+n+1 = 2
(n+1)(n+2)

2

So:

|DM| = 1 |DETM| = 8

|DM| = 2 |DETM| = 64

|DM| = 3 |DETM| = 1024

So of the 264 relations, only 1024 relations are candidates for the denotations of

natural language determiners.

 66

DETERMINERS AS PATTERNS ON THE TREE OF NUMBERS

(van Benthem 1983)

If |CAT| = 3, then there are four possibilities for the cardinalities in

<|CAT  SMART|, |CAT − SMART |>:

<0,3> means: |CAT  SMART | = 0 and |CAT − SMART | = 3

<1,2> means: |CAT  SMART | = 1 and |CAT − SMART | = 2

<2,1> means: |CAT  SMART | = 2 and |CAT − SMART | = 1

<3,0> means: |CAT  SMART | = 3 and |CAT − SMART | = 0

We can write down a tree of numbers which shows for each cardinality of CAT, all

the possibilities for the cardinalities of <|CAT  SMART |, |CAT − SMART |>:

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

We can now study the pattern that each determiner meaning rα makes on the tree of

numbers, by highlighting (bold italic) the extension of rα:

rEVERY

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

<0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

<0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 67

rSOME

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

...

rNO

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rAT LEAST 4

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 68

rAT MOST 4

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rEXACTLY 4

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rMOST

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 69

Aristotle’s square of opppositions

some ∃ all ∀

 contrary

contradictory contradictory

 contrary

no ¬∃ not all ¬∀

some all
 <0,0> <0,0>

 <0,1> <1,0> <0,1> <1,0>

 <0,2> <1,1> <2,0> <0,2> <1,1> <2,0>

<0,3> <1,2> <2,1> <3,0> <0,3> <1,2> <2,1> <3,0>

 <0,0> <0,0>

 <0,1> <1,0> <0,1> <1,0>

 <0,2> <1,1> <2,0> <0,2> <1,1> <2,0>

<0,3> <1,2> <2,1> <3,0> <0,3> <1,2> <2,1> <3,0>

no not all

Fact: some, all, no are lexicalized in languages as determiners (not necessarily in all)

not all is not lexicalized in any language as a determiner.

However, even though no is lexicalized, there is evidence that the ¬ and the ∃ part are

semantically separable.

Dutch (From Landman 2004):

(1) Wil jij een broodstok? Hm. Dat heet helemaal geen broodstok,
 Want you a breadstick? Hm. That is called completely [DP no breadstick]

dat heet soepstengel
that is called soupstel

 Do you want a breadstick? Hm. That isn’t called bread stick at all,

 that is called soup stem.

The negation takes auxiliaty scope, the DP semantically breaks up into

negation + broodstock

 70

Same in English, though determiner negation is a somewhat formal register.

(2) Seek no evil

 Don’t seek evil

Evil stays in the scope of the intensional context, but the negation takes auxiliary

scope.

Conclusion: even though there is a lexical item no and not a lexical item not all, the

two parts of the lexical item ¬ + ∃ are semantically separable like the two parts in

¬ + ∀.

 71

SYMMETRY

 Determiner α is symmetric iff for every model M and all sets X,Y  DM:

 <X,Y>  FM(α) iff <Y,X>  FM(α)

Pattern: α[CATS, SMART] is equivalent to α[SMART, CATS]

 α cat is smart iff α smart cookie is a cat

 α cats are smart iff α smart cookies are cats

 SYMMETRIC

every NO Every cat is smart iff every smart cookie is a cat

some YES Some cat is smart iff some smart cookie is a cat

no YES No cat is smart iff no smart cookie is a cat

at least n YES At least three cats are smart iff at least three smart cookies are cats

at most n YES At most three cats are smart iff at most three smart cookies are cats

exactly n YES Exactly three cats are smart iff exactly three smart cookies are cats

many YES Many cats are smart iff many smart cookies are cats

(on the analysis given, keeping m constant)

few YES Few cats are smart iff few smart cookies are cats

 (on the analysis given, keeping f constant)

most NO Most cats are smart iff most smart cookies are cats

the cat NO The cat is smart iff the smart cookie is a cat

the n cats NO The two cats are smart iff the smart cookies are two cats

both NO Both cats are smart iff both smart cookies are cats

neither NO Neither cat is smart iff neither smart cookie is a cat

Felicity in there-insertion contexts (Milsark 1974), definiteness effects:

(1) a. #There is every cat in the garden.

 b.  There is some cat in the garden.

 c.  There is no cat in the garden.

 d. There are at least three cats in the garden.

 e.  There are at most three cats in the garden.

 f.  There are exactly three cats in the garden.

 g.  There are many cats in the garden.

 h.  There are few cats in the garden.

 i. #There are most cats in the garden.

 j. #There is the cat in the garden.

 k. #There are the cats in the garden.

 l. #There are the three cats in the garden.

 m. #There are both cats in the garden.

 n. #There is neither cat in the garden.

 72

There are some zoologists who don't know what a platypus is.

There are not many zoologists who don't know what a platypus is.

There are no australian zoologists who don't know what a platypus is.

#There are all islandic zoologists who don't know what a platypus is.

#There are most czech zoologists who don't know what a platypus is.

The same pattern with relational nouns like sister in existential have sentences:

 John has D sister(s) in the army.

 John has a sister in the army/ #John has the sister in the army.

 John has at least two sisters in the army?#John has most sisters in the army

Note: exceptions:

 (1) a. Who should we ask to sing Auld lang Syne at the party.

 Well, there’s always Fred.

 b. What is there in the fridge? Well, there’s the milk and the wine and the

 cheese.

 c. There’s every reason to distrust him

(= there is good reason to distrust him. (1c) does not mean:

For every reason to distrust him, there is it.)

Milsark:

[DP [D α] NOUN] is felicitous in there-insertion contexts iff

α is an indefinite determiner

But Milsark doesn't define what an indefinite determiner is.

Observation: Keenan 1987, varying Barwise and Cooper 1981:

(Keenan's actual statement is a bit more subtle, since it applies also to complex noun

phrases.)

[DP [D α] NOUN] is felicitous in there-insertion contexts iff α is symmetric.

So Milsark’s notion of α is indefinite is defined as: α is symmetric

 73

Determiner α is an ECQ determiner iff α satisfies extension, conservativity and

quantity.

Let α be an ECQ determiner.

Given conservativity, the semantics of α[X,Y] where α is a symmetric determiner

only depends on X∩Y not on X ―Y. The reason is that ∩ is commutative,

X∩Y = Y∩X, but ― is not.

If α is an ECQ determiner, its semantics depends on X∩Y, or X―Y or on both.

If the semantics of α only depends on X∩Y α is symmetric

This follows from commutativity:

α[X, Y] ⇔ φα(|X∩Y|) ⇔ φα(|Y∩X|) ⇔ α[Y, X].
(with φα some numerical property not formulated in terms of X and Y)

In the other two cases there is no such equivalence, because of the non-commutative

nature of ―, hence you cannot prove symmetry.

This is a relatively informal proof. But it is not difficult to show this more formally.

Let us for ease write α[X, Y] for <X,Y> ∈ FM(α).

We defined:

α is symmetric iff

for all models M, for all X, Y ⊆ DM: <X,Y> ∈ FM(α) ⇔ <Y,X> ∈ FM(α)

Keenan 1987 gives another definition of symmetry (but the notion may already be in

van Benthem’s work):

α is symmetric iff

 for all models M, for all X, Y ⊆ DM: <X,Y> ∈ FM(α) ⇔ <X∩Y,DM> ∈ FM(α)

It will be visually easier to suppress the quantifiers and write this in the object

language form:

The first definition, then, is written as:

Definition 1: α is symmetric iff α[A, B] ⇔ α[B, A]

And the second definition is written as:

Definition 2: α is symmetric iff α[A, B] ⇔ α[A∩B, EXIST]

where EXIST is the existence predicate with: ⟦EXIST⟧M,g = DM

 74

Theorem: If α is an ECQ determiner then definition 1 and definition 2 are equivalent.

 (it is really conservativity that matters)

Proof.

1. The easy side.

Assume that α is symmetric on definition 2.

Then we get the following equivalences:

α[A, B] ⇔[definition 2] α[A∩B,EXIST] ⇔[commutativity]

 α[B∩A,EXIST] ⇔[definition 2] α[B, A]

Hence α is symmetric on definition 1.

2. The harder side (which uses conservativity)

Assume that α is an ECQ determiner and that α is symmetric on definition 1.

Then:

α[A, B] ⇔[conservativity] α[A, A∩B] ⇔[symmetry def 1] α[A∩B, A]

 ⇔[conservativity] α[A∩B, (A∩B)∩A]

 ⇔ α[A∩B, A∩B]

α[A∩B, A∩B] ⇔[determiner schema] rα (|(A∩B) ∩ (A∩B)|, |(A∩B) ― (A∩B)|)

 ⇔ rα (|A∩B|,0)

 ⇔ rα(|(A ∩ B) ∩ EXIST|, |(A ∩ B) ― EXIST|)

This is because (A ∩ B) ∩ EXIST = (A ∩ B)
 and (A ∩ B) ― EXIST = Ø

But:

rα(|(A ∩ B) ∩ EXIST|, |(A ∩ B) ― EXIST|) ⇔ α[A∩B, EXIST]

We have only used equivalences, so we have derived:

α[A, B] ⇔ α[A∩B, EXIST]

Hence α is symmetric on definition 2.

QED

With this we can indeed freely use the second definition of symmetry for natural

language determiners:

α is symmetric iff α[A, B] ⇔ α[AB, EXIST]

And this indeed means that the truth conditions of α[A, B] only depend on the

cardinality of AB, ie. are completely determined by that.

 75

We don’t use Milsark’s notion of indefineness, rather the terms used in the GQ

literature are weak and strong:

 Strenght:

A determiner α is weak iff α is symmetric; otherwise α is strong.

Generalization: Weak determiners are determiners α for which the truth value

 of α[A, B] only depends on |A  B|.

It is then the commutativity of  (i.e. the fact that A  B = B  A), which brings in

symmetry.

For strong determiners, the semantics of α[A,B] depends not on |A  B| or on more

than |A  B|.

Thus, the semantics of EVERY and MOST depends on |A – B|, which makes the

determiner antisymmetric (⊆ for every) or asymmetric (> for most).

The semantics of presuppositional noun phrases like the, both, neither have

presuppositions that interfere with symmetry: the semantics of α[A, B] associates a

presupposition with A, that of α[B, A] associates a presupposition with B. Obviously,

this is a failure of symmetry.

 76

The Adjectival Theory of Numericals

Intersective adjectives

ADJ = {OLD, SMART}

If A ∈ ADJ and P ∈ PRED1
nominal then λx.P(x) ∧ A(x) ∈ PRED1

nominal

Adjectival Theory: Indefinite determiners derive from adjectival interpretations.

(1) a. The three ferocious tigers

 b. The ferocious three tigers were sent to Artis, and the meek three tigers were

 sent to Blijdorp.

Inside NP, three can mingle with adjectives.

Idea: the three cats = THE[THREE ∩ CATS]

 where THREE ∈ ADJ and CATS ∈ PRED1.

 three cats → λx.CATS(x) ∧ THREE(x)

The set of pluralities that are cats and that count as three.

This predicate forms input for the generalized quantifier.

DP

D NP

the APnum NP

 three cats

On this idea, in three cats are smart we see on the surface the NP three cats which is

a one place predicate, but we don’t see a determiner:

DP

D NP

e APnum NP

 three cats

 77

There is actually reason to assume that the numerical actually syntactically occurs in

the DP-layer:

DP

D NP

APnum,i D APnum,i NP

three e e cats

But the question is, on either analysis: what is the interpretation of the empty

determiner?

The answer (given in Landman 2000) is more subtle than I will give here, and is

addressed in detail at the end of Advanced Semantics, when we read my 2000 paper.

But it is generally assumed that we have here a one-place predicate, an NP

interpretation, and what we need to get is a DP interpretation.

And the standard assumption is that this is done via a form of existential closure.

For the simple case above, we can assume that existential closure takes place by

assuming that there is a null determiner [DP e] with determiner interpretation: EC.

As I argue in Landman 2000, defining EC so that it will deal with all cases correctly is

rather tricky, but when done correctly, it will turn out to be the case, that in the case of

example (1a) EC = SOME:

(1) a. [[Three cats e] are smart]

 EC[λx.CATS(x) ∧ THREE(x), SMART]

 SOME[λx.CATS(x) ∧ THREE(x), SMART]

In this analysis, three is just a conjoined predicate with cats and not a determiner.

The symmetry of the analysis comes from the interpretation of EC,

in fact, EC, as given in Landman 2000 is symmetric in all cases.

This means that on that analysis the symmetry actually does not derive from the

numerical, but from the fact that the numerical is conjoined with the noun and the

semantics of symmetric EC.

Moral: GQT is not a God Given Theory that gives results that cannot be changed.

It is a framework and a tool for comparing and developing semantic analyses.

 78

A remark about there-insertion:

-there is is not an existential quantifier :

That wouldn’t work for examples like (1):

(1) There is no cat in the garden.

This doesn’t have a reading with an existential quantifier taking scope over no cat.

(?There is something that is no cat, that isn’t a cat, that ??????)

-there is is not a locative.

It looks like a locative in English, and in Dutch, but cross-linguistic variation shows

that this is misleading.

The there-insertion construction is a construction in which the subject does not occur

in the normal external subject position but in some lower position.

The definiteness effects are presumably related to the special properties of that lower

position (at least that is what I argue in my 2004 book Indefinites and the Type of

Sets).

Instead what appears in the external subject position is what we call a pleonastic

element (not a great term, because the element may be null).

What appears there is open to variation.

We find the definiteness effects not just with there be but also with unaccusative

verbs like arrive.

English: There have just now arrived three girls from Paris.

Pleonastic: there

Dutch: Er zijn net drie meisjes aangekomen uit Parijs.

 Misschien zijn (er) net drie meisjes aagekomen uit Parijs.

The finite verb (zijn) is in second position.

Pleonastic: If the subject is first position, then obligatorily er [there]

 If the subject is not first position, it is third position

 and either er or – [null] (i.e. optionally filled with er)

German: Es sind - gerade drei Mӓdchen angekommen aus Paris.

 Vielleicht sind - gerade drei Mӓdchen angekommen aus Paris.

The finite verb (sind) is in second position.

Pleonastic: If the subject is first position, then obligatorily es [it]

 If the subject is not first position, it is third position and obligatorily – [null]

French: Il sont arrivé trois filles de Paris.

Pleonastic: Il [he] are arrived three girls from Paris

Idiomatic: Il y a un chat dans le jardin Pleonastic il

 he there has a cat in the garden

 there is a cat in the garden

 79

MONOTONICITY.

Let α be a determiner.

In α[P, Q] we call P the first argument of α and Q the second argument of α

Terminology:

α is 1: α is upward monotonic, upward entailing, on its first argument

α is 1: α is downward monotonic, downward entailing, on its first argument

α is −1: α is neither upward nor downward monotonic on its first argument

α is 2: α is upward monotonic, upward entailing, on its second argument

α is 2: α is downward monotonic, downward entailing, on its second argument

α is −2 α is neither upward nor downward monotonic on its second argument

α is 1 iff for every model M and all sets X1,X2,Y  DM:

 if <X1,Y>  FM(α) and X1  X2 then <X2,Y>  FM(α)

α is 1 iff for every model M and all sets X1,X2,Y  DM:

 if <X2,Y>  FM(α) and X1  X2 then <X1,Y>  FM(α)

α is −1 iff α is not 1 and α is not 1

α is 2 iff for every model M and all sets X,Y1,Y2  DM:

 if <X,Y1>  FM(α) and Y1  Y2 then <X,Y2>  FM(α)

α is 2 iff for every model M and all sets X,Y1,Y2  DM:

 if <X,Y2>  FM(α) and Y1  Y2 then <X,Y1>  FM(α)

α is −2 iff α is not 2 and α is not 2

Diagnostic Tests:

For every model M for English and g: ⟦GINGER CAT⟧M,g  ⟦CAT⟧M,g

For every model M for English and g: ⟦WALK⟧M,g  ⟦MOVE⟧M,g

α is 1 iff α[GINGER CAT, WALK]  α[CAT, WALK]

α is 1 iff α[CAT, WALK]  α[GINGER CAT, WALK]

α is 2 iff α[CAT, WALK]  α[CAT, MOVE]

α is 2 iff α[CAT, MOVE]  α[CAT, WALK]

 80

 ARGUMENT 1 ARGUMENT 2

every  

every ginger cat walks every cat walks

every cat walks every ginger cat walks

every cat walks every cat moves

every cat moves every cat walks

some  

some ginger cat walks some cat walks

some cat walks some ginger cat walks

some cat walks some cat moves

some cat moves some cat walks

no  

at least n  

at most n  

exactly n − −

most − 

most ginger cats walk most cats walk

most cats walk most ginger cats walk

most cats walk most cats move

most cats move most cats walk

many   (on the analysis given)

few   (on the analysis given)

(we ignore the partial determiners here)

Fact: The the determiner interpretations given earlier have exactly this monotonicity

behaviour:

Examples:

EVERY

assume: EVERY[CAT, WALK] ↓1

then: CAT ⊆ WALK

then: GINGER CAT ⊆ WALK (because GINGER CAT ⊆ CAT)
hence: EVERY[GINGER CAT, WALK]

assume: EVERY[CAT, WALK] ↑2

then: CAT ⊆ WALK

then: CAT ⊆ MOVE (because WALK ⊆ MOVE)
hence: EVERY[CAT, MOVE]

 81

AT MOST THREE

assume: AT MOST THREE[CAT, WALK] ↓1

then: |CAT ∩ WALK| ≤ 3

then: |GINGER CAT ∩ WALK| ≤ 3 because GINGER CAT ⊆ CAT
hence: AT MOST THREE[GINGER CAT, WALK]

assume: AT MOST THREE[CAT, MOVE] ↓2

then: |CAT ∩ MOVE| ≤ 3

then: |CAT ∩ WALK| ≤ 3 because WALK ⊆ MOVE
hence: AT MOST THREE[CAT, WALK]

MOST

↑2

Assume: MOST[CAT, WALK]

Then |CAT ∩ WALK| > |CAT ― WALK|

But: |CAT  MOVE|  |CAT  WALK| because WALK ⊆ MOVE

|CAT − MOVE|  |CAT − WALK|

Hence: |CAT ∩ MOVE| > |CAT ― MOVE|

And hence: MOST[CAT, MOVE]

―1

Assume there are 5 ginger cats and 12 non-ginger cats

Assume 3 ginger cats walk, and 2 ginger cats don’t walk

|GINGER CAT ∩ WALK| > |GINGER CAT ― WALK|

Assume none of the 12 non-ginger cats walk

|CAT ∩ WALK| < |CAT ― WALK|

Then MOST[GINGER CAT, WALK] is true

but MOST[CAT, WALK] is false.

Hence MOST is not ↑1

Assume all 12 non-ginger cats walk

|CAT ∩ WALK| > |CAT ― WALK|

And assume 2 of the 5 ginger cats don’t walk.

|GINGER CAT ∩ WALK| < |GINGER CAT ― WALK|

Then MOST[CAT, WALK] is true

but MOST[GINGER CAT, WALK] is false.

Hence MOST is not ↓1

Hence MOST is ―1

 82

Polarity sensitivity items: any, ever, a red cent, budge an inch, a damn,…

 (1) a. I don't see anything

 b. #I see anything.

 (2) a. I haven't ever visited him.

 b. #I have ever visited him.

 (3) a. I don't give a damn.

 b. #I give a damn.

 (4) a. He doesn’t give a red cent to charity.

 b. #He gives a red cent to charity.

 (5) a. The donkey didn’t budge an inch.

 b. #The donkey budged an inch.

Polarity sensitivity items are licensed in the scope of negation.

But not just negation, also other contexts:

-Questions: Did you ever love me?

-Antecedents of conditionals: If Fred reads anything these days, it is Italo Calvino.

-and more…

We use ever.

We check: α student(s) ever visited Paris ever in the second argument of α

 α student(s) who ever visited Paris was/were happy

 ever in the first argument of α

(1) a. #Every student ever visited Paris. 2

 b. Every student who ever visited Paris was happy. 1

(2) a. #Some student ever visited Paris. 2

 b. #Some student who ever visited Paris was happy. 1

(3) a. No student ever visited Paris. 2

 b. No student who ever visited Paris was happy. 1

(4) a. #At least three students ever visited Paris. 2

 b. #At least three students who ever visited Paris were happy. 1

(5) a. At most three students ever visited Paris. 2

 b. At most three students who ever visited Paris were happy. 1

(6) a. #Exactly three students ever visited Paris. 2

 b. #Exactly three students who ever visited Paris were happy. 1

(7) a. #Most students ever visited Paris. 2

 b.?Most students who ever visited Paris were happy. 1

(8) a. #Many students ever visited Paris. 2

 b. #Many students who ever visited Paris were happy. 1

(9) a. Few students ever visited Paris. 2

 b Few students who ever visited Paris were happy. 1

 83

Results: ever felicitous inside:

 ARGUMENT 1 ARGUMENT 2

every YES NO

some NO NO

no YES YES

at least n NO NO

at most n YES YES

exactly n NO NO

most NO(?) NO

many NO NO

few YES YES

Correlation: (Ladusaw 1979) Polarity sensitivity item α is felicitous iff

 α occurs in a downward monotonic environment.

Results: ever felicitous inside:

 ARGUMENT 1 ARGUMENT 2

every YES ↓1 NO ↑2

some NO ↑1 NO ↑2

no YES ↓1 YES ↓2

at least n NO ↑1 NO ↑2

at most n YES ↓1 YES ↓2

exactly n NO ―1 NO ―2

most NO(?) ―1 NO ↑2

many NO ↑1 NO ↑2

few YES ↓1 YES ↓2

 84

What is it about any that makes it occur in DE contexts?

(Kadmon and Landman 1993)

Intensifiers:

 John is a fool

 John is a damn fool

1. What does damn do?

Answer: it creates a stronger expression

2. What does stronger mean?

Answer: The expression damn entails the expression without damn

(Kadmon and Landman allow also pragmatic implication here)

3. How does it create a stronger meaning?

Answer: By being a subsective/intersective adjective

(a damn fool is a fool, but not every fool is a damn fool)

i.e. DAMN FOOL ⊆ FOOL

4. When will it work?

Answer: In upward entailing contexts.

Cf. John isn't a damn fool, he is only a bit of a fool (only metalinguistic negation)

Cf. a. I have always told you Jane, your husband is a DAMN fool.

 b.# I have always told you Jane, your husband isn't a DAMN fool.

A damn fool is an indefinite which is stronger and more restricted than

 a fool.

5. How do you intensify in downward entailing contexs?

Answer: By finding an expression that creates a stronger expression in downward

entailing contexts.

Adjectives restrict the noun interpretation: this is weaker in DE contexts.

So what we want is an anti-adjective: an expression that doesn't restrict the noun

interpretation but liberates it, widenes it.

 85

6. Polarity sensitivity items are anti-adjectives

(This is not a standard term, the term is invented for these class notes. But it is a good

term.)

Out of the blue the noun potatoes is restricted in context.

I ask: do we have any potatoes? You say: no, we don’t have potatoes, you turned

them into latkes.

We don't have potatoes = We don't have potatoesNARROW

 potatoesNARROW = potatoes for eating

I say [desparately]: what about the potatoe we used for the game of Mr. Potato Head

with the kids yesterday? You say, no Fred, we don’t have any potatoes.

 We don't have any potatoes = We don't have potatoesWIDE

 potatoesWIDE = potatoes for eating or for playing games

Any fool is an indefinite which is stronger and less restricted than a fool.

But, of course, anti-adjectives only create a stronger expression in DE contexts.

So the restriction on DE contexts can be explained through the interaction of the two

properties: widening and strenghtening.

 86

ANOTHER CHARACTERIZATION OF 2 AND 2 (van Benthem 1984)

Upward monotonicity on the second argument

Monotonicity, again, in simpler notation:

α is 2 iff if α[A, B1] and B1 ⊆ B2 then α[A, B2]

van Benthem 1984 shows that there is an equivalent second definition of

monotonicity: 2*

α is 2* iff if α[A, B1] and (A  B1)  (A  B2) then α[A, B2]

The condition (A  B1)  (A  B2) stands for the following situation:

 (A  B1)

(A ― B1)

 (A  B2)

(A ― B2)

 [This can be seen by noting that:

1. For any set B: (A  B)  (A ― B) = A

2. If (A  B1)  (A  B2) then (A ― B2)  (A − B1)]

On this definition of monotonicity,

α is upward monotonic on the second argument if

moving objects from the difference to the intersection doesn’t affect the truth value

And van Benthem proves that these two definitions are equivalent (for ECQ

determiners).

Lemma: α if 2 iff α is 2*

Proof:

(Side 1) Assume α is 2*.

 Assume that α[A, B1] and B1  B2.

 If B1  B2 then (A  B1)  (A  B2).

 Then, by definition of 2*, α[A, B2].

 Hence, indeed, α is 2.

(Side 2) Assume α is 2.

 Assume that α[A, B1] and (A  B1)  (A  B2).

 By conservativity: α[A, B1] iff α[A, AB1]

 Since (A  B1)  (A  B2), by 2, α[A, AB2].

 By conservativity, α[A, AB2] iff α[A, B2].

 Hence α[A, B2]

 Hence, indeed, α is 2*.

 87

So this version of ↑2* says:

Assume that α[CAT, SMART] is true [situation 1]

Decide that some non-smart cats are smart after all [situation 2]

Then α[CAT, SMART] is true in situation 2.

Examples:

1. If at least three cats are smart, then smartening up non-smart cats doesn’t affect the

truth value. at least three is ↑2*.

2. If at most three cats are smart, then smartening up non-smart cats can easily affect

the truth value. most three is not ↑2*.

Downward monotonicity on the second argument:

α is 2* iff if α[A, B2] and (A  B1)  (A  B2) then α[A, B1]

On this definition of monotonicity,

α is downward monotonic on the second argument if

moving objects from the intersection to the difference doesn’t affect the truth value

So this version of ↓2* says:

Assume that α[CAT, SMART] is true [situation 1]

Decide that some smart cats are not smart after all [situation 2]

Then α[CAT, SMART] is true in situation 2.

Examples:

1. If at most three cats are smart, then removing smart cats doesn’t affect the truth

value. at most three is ↓2*.

2. If at least three cats are smart, then removing smart cats can easily affect the truth

value. at least three is not ↓2*.

Lemma: α if 2 iff α is 2* Proof: mirror image of the above proof.

−2* If exactly three cats are smart is true, it doesn't necessarily stay true if you decide

that some non-smart cats are smart after all, and neither if you decide that some smart

cats are not smart after all.

 88

ANOTHER CHARACTERIZATION OF 1 AND 1 (van Benthem 1984)

Only an informal characterization this time:

α is 1* iff if α[CAT, SMART] is true then α[CAT, SMART] stays true if you add cats.

α is 1* iff if α[CAT, SMART] is true then α[CAT, SMART] stays true if you take

away cats.

Here adding cats means: either adding them to the intersection or the difference of

CAT and SMART or both, and taking away cats means: either taking them away from

the intersection or from the difference or from both.

Example:

2* If at least three cats are smart is true, it stays true if you add more cats to the

domain.

2* If at most three cats are smart is true, it stays true if you take away some cats

from the domain.

−2* If exactly three cats are smart is true, it doesn't necessarily stay true if you add

cats to the domain, and neither if you take away cats from the domain.

 89

MONOTONICITY ON THE TREE OF NUMBERS

Monotonicity on the second argument

These characterisations allow us to define the patterns that monotonicity make on the

tree of numbers:

2
* if <n,m>  rα, then every number to the right is in α

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,3> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

2
* if <n,m)  rα then every number to the left is in α

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 90

We see:

rEVERY is 2
*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

<0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

<0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rSOME is 2
*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

...

rNO is 2
*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 91

rAT LEAST 4 is 2
*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rAT MOST 4 is 2
*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rEXACTLY 4 is neither2
* nor 2

*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 92

rMOST is 2
*

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 93

Monotonicity on the first argument

We can give similar definitions on the tree for 1 and 1

I will here state the facts about the trees:

rα is 1 iff if <n,m>  rα then <n+1,m>, <n,m+1>  rα

This means that rα is 1 iff if <n,m>  rα

then the whole triangle with top <n,m> is in rα.

Adding a new object to A∪B doesn’t affect the truth conditions

Example: rAT MOST 4 is 1:

rAT LEAST 4

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rα is 1 iff if <n,m>  rα then <n−1,m>, <n,m−1>  rα

(when n or m is 0, set n−1, m−1 to 0 as well)

This means that rα is 1 iff if <n,m>  rα then the whole inverted triangle with

bottom <n,m> is in rα.

Taking away objects from A∪B doesn’t affect the truth conditions.

Example: rAT LEAST 4 is 1:

rAT MOST 4

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 94

It is easy to check that rEXACTLY 4 is none of the above:

rEXACTLY 4

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

revery is clearly not 1, since the downward triangles are not preserved.

revery is 1, since the upward inverted triangle is just the right edge.

rEVERY

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

<0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

<0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rno is again clearly not 1, but it is 1, because, again, the upward inverted triangle is

just the left edge.

rNO

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 95

rmost is 2, but neither 1 nor 1: for no point in rmost is the downward triangle

completely in rmost and for no point is the upward triangle completely in rmost (because

<0,0> is not).

rMOST

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

 96

SYMMETRY ON THE TREE OF NUMBERS

We have shown that for symmetric determiners the truth value of α[A, B] only

depends on A∩B not on the difference. This means in terms of the numbers <n,m>,

that the truthvalue only depends on n, not on m.

We assume that:

α is symmetric iff rα is symmetric

What does it mean for rα to be symmetric?
It means that the number m varies without affecting the truthvalue of α[A, B]

This means that:

rα is symmetric iff

If for some number n ∈ ℕ there is a number k ∈ ℕ such that <n,k> ∈ rα
then for all numbers m ∈ ℕ: <n,m> ∈ rα

If for some number n ∈ ℕ there is a number k ∈ ℕ such that <n,k> ∉ rα
then for all numbers m ∈ ℕ: <n,m> ∉ rα

In terms of the tree of numbers this means the following.

For number n, {<n,k>:k  ℕ} is a diagonal line in the tree going from left below to

right up:

Like, for n = 3:

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rα is symmetric iff every such diagonal line is either completely inside rα or

completely outside rα.

With this we can check straighforwardly in the trees which rα's are symmetric:

 97

revery is not symmetric:

rEVERY

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

<0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

<0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

rsome is symmetric:

rSOME

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

...

rno is symmetric:

rNO

 <0,0> |CAT|=0

 <0,1> <1,0> |CAT|=1

 <0,2> <1,1> <2,0> |CAT|=2

 <0,3> <1,2> <2,1> <3,0> |CAT|=3

 <0,4> <1,3> <2,2> <3,1> <4,0> |CAT|=4

 <0,5> <1,4> <2,3> <3,2> <4,1> <5,0> |CAT|=5

 <0,6> <1,5> <2,4> <3,3> <4,2> <5,1> <6,0> |CAT|=6

 <0,7> <1,6> <2,5> <3,4> <4,3> <5,2> <6,1> <7,0> |CAT|=7

 <0,8> <1,7> <2,6> <3,5> <4,4> <5,3> <6,2> <7,1> <8,0> |CAT|=8

<0,9> <1,8> <2,7> <3,6> <4,5> <5,4> <6,3> <7,2> <8,1> <9,0> |CAT|=9

... ...

It is easy to check that rAT LEAST n, rAT MOST n, rEXACTLY n are symmetric,

but that rmost is not symmetric.

 98

SEMANTIC AUTOMATA, JUST A TASTE (again van Benthem)

CAT CAT  CALICO CAT ¡ CALICO

(A calico cat is three coloured: typically black, red, and white)

Give every individual in CAT a collar with the letter i (for intersection) or d (for

difference):

 ronya has label i because ronya  CAT  CALICO

 pim has label d because pim  CAT ¡ CALICO

In going through the set of cats, we can write a sequence:

 i i i d i d i i

 a string of labels indicating that |CAT  CALICO| = 6 and

 |CAT − CALICO| = 2

the set of strings  in alphabet {i, d} such that d doesn’t occur in 

 {e, i, ii, iii, iiii,….} (e is the empty string)

The some language is

the set of strings  in alphabet {i, d} such that i does occur in 

 {i, id, di, idd, did, ddi, iid, idi, dii,iid,…}

The most language is the set of strings with more d’s and i’s.

 ddiiidiii is in the most language, ddddddiid is not.

etc.

The every automaton (smiley’s are accepting states):

 i

 i

 Accepted: iiiiii

 d Rejected: iiiidi

 (one cat isn't three coloured)

 d

 99

The some automaton:

 d

 d

 Accepted: ddddid

 i Rejected: dddd

 i

Fact: For every determiner definable in predicate logic, there is a finite state

 automaton accepting its language (regular)

 -Some ‘determiners’ that are not definable in predicate logic have a language

 accepted by a finite state automaton (an even number of)

 - the most language is not accepted by a finite state automaton.

 the most language is accepted by a pushdown storage automaton (context

 free).

Push down storage automaton: while reading you can push symbols onto a memory

store or pop symbols from the store, where the store is a first-in last-out memory.

The most automaton:

Start: You start reading the first symbol of the string and an empty store.

Move: 1. If the top of the store is empty, push what you read on the input on top of

 the store.

 2. If what you read on the input is the same as what is on top of the store,

 then push what you read on the input on the top of the store.

3. If the store is not empty and what you read on the input is different from

 what is on top of the store, then pop the topsymbol off the store.

 4. In each case move to reading the next right symbol on the input tape.

End: When you reach the end symbol # on the input tape stop and accept the string if

 there are i’s in the store, otherwise reject the string.

 100

Example. We read the string: idiiddiddii

We start:

i d i i d d i d d i i #


 

 

You read i on the input tape, nothing in the store.

Read the next symbol on the input tape and add the i that you read on the input to the

top of the store:

i d i i d d i d d i i #


 

 
 i

You read d on the input tape and i on the store. They are different. So:

Read the next symbol on the input tape and remove the i from the top of the store:

i d i i d d i d d i i #


 

 

You read i on the input tape, nothing in the store.

Read the next symbol on the input tape and add the i that you read on the input to the

top of the store:

i d i i d d i d d i i #


 

 
 i

You read i on the input tape, and i on the top of the store. They are the same.

Read the next symbol on the input tape and add the i that you read on the input to the

top of the store:

i d i i d d i d d i i #


 

 
 i

 i

You read d on the input tape and i on the store. They are different. So:

 101

Read the next symbol on the input tape and remove the i from the top of the store:

i d i i d d i d d i i #


 

 
 i

You read d on the input tape and i on the store. They are different. So:

Read the next symbol on the input tape and remove the i from the top of the store:

i d i i d d i d d i i #
 

 

You read i on the input tape, nothing in the store.

Read the next symbol on the input tape and add the i that you read on the input to the

top of the store:

i d i i d d i d d i i #

 
 

 
 i

You read d on the input tape and i on the store. They are different. So:

Read the next symbol on the input tape and remove the i from the top of the store:

i d i i d d i d d i i #

 
 

 

You read d on the input tape, nothing in the store.

Read the next symbol on the input tape and add the d that you read on the input to the

top of the store:

i d i i d d i d d i i #

 
 

 
 d

You read i on the input tape and d on the store. They are different. So:

 102

Read the next symbol on the input tape and remove the d from the top of the store:

i d i i d d i d d i i #

 
 
 

You read i on the input tape, nothing in the store.

Read the next symbol on the input tape and add the i that you read on the input to the

top of the store:

i d i i d d i d d i i #

 
 
 
 i
You read end symbol # on the input tape, i on top of the store.

You stop and you accept the string, since there are i’s in the store.

This means that the automaton accepts the string idiiddiddii.

This means that it represents a situation in which MOST[CAT, CALICO] is true,

which is good, since there are 6 CATS that are calico and 5 cats that are not.

